首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A coupled dynamic problem of electromechanics for thin wall multilayer elements is formulated based on the Kirchhoff–Love hypotheses. In the case of harmonic loading, a simplified formulation is given using the monoharmonic approach and the concept of complex moduli to characterize the cyclic properties of the material. The problem of forced vibrations of three-layer beam, whose outer layers are made of a viscoelastic piezoactive material, and, the inner layer of a passive physically nonlinear material, is considered as an example to demonstrate the possibility of the technique elaborated. The possibility of damping the forced vibrations of a structure with the help of harmonic voltages applied to the external piezoactive layers is studied. Results obtained for the transient response of the beam using the complete model are compared with data found using the simplified model. Limitations on the simplified model application are specified.  相似文献   

2.
The thermoelastic bending of a circular light-core sandwich plate on a deformable foundation is examined. To describe the kinematics of the plate with asymmetric thickness, the hypothesis of broken normal is adopted. The reaction of the foundation is described by Winkler’s model. The thermomechanical load is local and symmetric. The system of equilibrium equations is derived and solved exactly. Numerical results for three-layer metal-polymer plate are presented __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 96–103, February 2006.  相似文献   

3.
The natural vibration of an elastic sandwich beam on an elastic foundation is studied. Bernoulli’s hypotheses are used to describe the kinematics of the face layers. The core layer is assumed to be stiff and compressible. The foundation reaction is described by Winkler’s model. The system of equilibrium equations is derived, and its exact solution for displacements is found. Numerical results are presented for a sandwich beam on an elastic foundation of low, medium, or high stiffness __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 5, pp. 57–63, May 2006.  相似文献   

4.
基于Winkler地基模型和Euler-Bernoulli梁理论,建立了Winkler地基上有限长梁的非线性运动方程。运用Galerkin方法对运动方程进行一阶模态截断,得到了离散的非线性振动方程,然后利用多尺度法求得了该系统3次超谐共振的幅频响应方程及其位移的一阶近似解。为揭示弹性地基上有限长梁的3次超谐共振响应的特性,分别分析了长细比、弹性模量、基床系数、阻尼、密度等主要参数对该系统3次超谐共振幅频响应曲线的影响,并通过与非共振硬激励情况的对比分析了3次超谐共振对系统实际动力反应的影响。研究结果表明:3次超谐共振响应曲线有跳跃和滞后现象;增大阻尼和基床系数均对3次超谐共振的发生有抑制作用;增大外激励幅值,系统3次超谐共振区域增大;3次超谐共振将增大系统的稳态动力响应幅值和加速度。  相似文献   

5.
The equations describing a layered packet with transverse shears and compression taken into account in all layers are constructed in this paper. The layer material is assumed to be elastic and transversely isotropic. The generalized Timoshenko kinematic hypotheses are used to take into account the transverse shears and compression. The equations in generalized forces, moments, and displacements are obtained, and the equations for characteristic functions in terms of which all variables describing the stress-strain state in the layered packet can be expressed are derived. The deformation problem for a three-layer beam is considered as an example.  相似文献   

6.
Winkler弹性地基上梁的精化理论   总被引:2,自引:0,他引:2  
将Cheng精化理论推广到winkler弹性地基上梁的研究当中,对winkler弹性地基上的梁进行了精确的分析,给出其精化理论。首先将板内的位移利用中面上位移及其沿梁厚方向的梯度表示出来,并获得梁内应力张量。再利用winkler弹性地基条件和Lur'e算子方法,获得弹性地基上梁的控制方程。若略去控制方程中的高阶项,与弹性地基上欧拉-伯努利梁的挠度控制方程一致。  相似文献   

7.
The coupled thermomechanical behavior of structurally inhomogeneous viscoplastic bodies under cyclic loading is investigated by an example of the problem on harmonic bending and dissipative heat-up of a three-layer beam. Both the generalized thermomechanically consistent flow theory (an exact formulation) and the scleronomic model (an approximated formulation) are used to solve the problem. Aluminum alloy AMg-6 and steel 12KhN3A are chosen as the materials of the layers. The following two configurations of the beam are considered: (i) the outer layers are aluminum and the inner layer is steel, and (ii) the outer layers are steel and the inner layer is aluminum. The results obtained in solving the problem in the exact and approximate formulations are compared for the amplitudes of the mechanical field characteristics, dissipated and accumulated energies, and the temperature of dissipative heat-up. A good agreement between the results is pointed out. A comparative estimation of the absorption factor of the beam for different arrangement of the layers is performed. S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraines, Kiev. Translated from Prikladnaya Mekhanika, Vol. 36, No. 2, pp. 135–143, February, 2000.  相似文献   

8.
This paper presents an effective numerical method for solving elastic wave propagation problems in an infinite Timoshenko beam on viscoelastic foundation in time domain. In order to use the finite element method to model the local complicated material properties of the infinite beam as well as foundation, two artificial boundaries are needed in the infinite system so as to truncate the infinite beam into a finite beam. This treatment requires an appropriate boundary condition derived and applied on the corresponding truncated boundaries. For this purpose, the time-dependent equilibrium equation of motion for beam is changed into a linear ordinary differential equation by using the operator splitting and the residual radiation methods. Simultaneously, an artificial parameter is employed in the derivation. As a result, the high-order accurate artificial boundary condition, which is local in time, is obtained by solving the ordinary differential equation. The numerical examples given in this paper demonstrate that the proposed method is of high accuracy in dealing with elastic wave propagation problems in an infinite foundation beam.  相似文献   

9.
基于Winkler地基模型及Euler-Bernoulli梁理论,建立了弹性地基上有限长梁的非线性运动方程.运用Galerkin方法对运动方程进行一阶模态截断,并利用多尺度法求得该系统主共振的一阶近似解.分析了长细比、地基刚度、外激励幅值和阻尼系数等参数对系统主共振幅频响应的影响,然后通过与非共振硬激励情况对比分析主共振对其动力响应的影响.结果表明:主共振幅频响应存在跳跃和滞后现象;阻尼对主共振响应有抑制作用;主共振显著增大系统稳态动力响应位移.  相似文献   

10.
本文系统介绍了预应力锚杆肋梁的受力特点,分析了预应力锚杆肋梁的受力机理,并应用于深基坑支护工程,采用有限元方法对预应力锚杆肋梁支护的基坑进行数值计算,得出纵横梁的弯矩及面层的位移,弥补了传统方法的不足,将计算结果与传统的锚桩支护方法进行对比,表明在护坡桩桩端无法嵌入的情况下,采用预应力锚杆肋梁支护是一种经济、可靠的方式。  相似文献   

11.
This paper addresses the static response of an infinite beam supported on a unilateral (tensionless) two-parameter Pasternak foundation and subjected to complex transverse loads, including self weight. The transfer displacement function method (TDFM) is employed to determine the initially unknown lengths that remain in contact. In contrast to a Winkler Foundation System (WFS), the lift-off points in a PFS (Pasternak Foundation System) are not necessarily at zero displacement but may be determined sequentially through considering the compatibility conditions at the junctions of contact and non-contact segments. After the response of the whole system including the beam and foundation is expressed through the displacement constants of the initial segment, the contact problem is reduced to two nonlinear algebraic equations with two unknowns. The foundation reactions and the internal actions of the beam may also be determined from the displacement response of the system. Two simple cases are solved to illustrate the influence of the foundation stiffness factors and finally, a third example of a beam with several contact segments is presented to demonstrate the application of the TDFM.  相似文献   

12.
This paper investigates the steady-state responses of a Timoshenko beam of infinite length supported by a nonlinear viscoelastic Pasternak foundation subjected to a moving harmonic load. The nonlinear viscoelastic foundation is assumed to be a Pasternak foundation with linear-plus-cubic stiffness and viscous damping. Based on Timoshenko beam theory, the nonlinear equations of motion are derived by considering the effects of the shear deformable beams and the shear modulus of foundations at the same time. For the first time, the modified Adomian decomposition method(ADM) is used for solving the response of the beam resting on a nonlinear foundation. By employing the standard ADM and the modified ADM, the nonlinear term is decomposed, respectively. Based on the Green's function and the theorem of residues presented,the closed form solutions for those linear iterative equations have been determined via complex Fourier transform. Numerical results indicate that two kinds of ADM predict qualitatively identical tendencies of the dynamic response with variable parameters, but the deflection of beam predicted by the modified ADM is smaller than that by the standard ADM. The influence of the shear modulus of beams and foundation is investigated. The numerical results show that the deflection of Timoshenko beams decrease with an increase of the shear modulus of beams and that of foundations.  相似文献   

13.
A strongly non-linear dynamic problem of thermomechanics for multilayer beams is formulated based on the Kirchhoff–Love hypotheses. In the case of harmonic loading, a simplified formulation is given using a single-frequency approximation and the concept of complex moduli to characterise the non-linear cyclic properties of the material. As an example, the problem of forced vibrations and dissipative heating of a roller-supported layered beam containing piezoactive layers is solved. Different aspects of thermal, mechanical and electric responses to the mechanical and electric excitations are addressed. Dissipative heating due to electromechanical losses in the three-layer beam with piezoelectric layers is studied. It is assumed that the structure fails if the temperature exceeds the Curie point for piezoceramics. Using this criterion, the fatigue life of the structure is estimated. Limitations of the approximate monoharmonic approach are also specified.  相似文献   

14.
何威  左树行  白象忠 《应用力学学报》2020,(1):63-69,I0004,I0005
为建立混凝土路面结构受力分析计算模型,以Winkler弹性地基梁模型为基础,推导出了弹性地基双层梁理论的表达式;给定边界条件,利用MATLAB软件获得了无限长弹性地基梁在集中力作用下的挠度表达式。将混凝土路面结构简化为弹性地基上的双层梁,当车辆荷载作用于混凝土路面时,在集中载荷的作用下,建立了面层与基层的微分平衡方程。应用广义“初参数”法,得到了双层梁位移和应力的解析解。通过算例,对面层及基层的变形和应力进行了分析,结果表明:增大面层、基层的轴惯性矩和地基的弹性常数,可以有效地减少面层和基层的变形量,降低最大应力数值,但抗弯刚度对基层和面层的弯矩受力影响不大。最后将结果与ANSYS分析结果进行了比较,佐证了解的可靠性,研究结果可为混凝土路面结构设计提供依据。  相似文献   

15.
Bistable structures, such as buckled beams or plates, are characterized by a two-well potential. Their nonlinear properties are currently exploited in actuators design (e.g. MEMS micropumps, switches, memory cells) to produce relatively high displacements and forces with low actuation energies. We investigate the use of distributed multiparameter actuation to control the buckling and postbuckling behavior of a three-layer piezoelectric beam pinned at either end. A two-parameter bending actuation controls the transversal motion, whilst an axial actuation and a beam end-shortening modulate the tangent bending stiffness. The postbuckling behavior is studied by reducing to a 2 dof system a nonlinear extensible elastica model. When the bending actuation is spatially symmetric, the postbuckling phenomena are analogue to those obtained for a transversal midspan force, being characterized by a snap-through instability. The use of a two-parameter actuation opens new transition scenarios, where it is possible to get true quasi-static transitions between the two specular equilibria of the buckled beam, without any instability phenomenon. The efficiencies of these different transition paths are discussed in terms of energetic requirements and stability properties. A numerical example shows the technical feasibility of the proposed actuation technique.  相似文献   

16.
In this article, both thermal buckling and post-buckling of pinned–fixed beams resting on an elastic foundation are investigated. Based on the accurate geometrically non-linear theory for Euler–Bernoulli beams, considering both linear and non-linear elastic foundation effects, governing equations for large static deformations of the beam subjected to uniform temperature rise are derived. Due to the large deformation of the beam, the constraint forces of elastic foundation in both longitudinal and transverse directions are taken into account. The boundary value problem for the non-linear ordinary differential equations is solved effectively by using the shooting method. Characteristic curves of critical buckling temperature versus elastic foundation stiffness parameter corresponding to the first, the second, and the third buckling mode shapes are plotted. From the numerical results it can be found that the buckling load-elastic foundation stiffness curves have no intersection when the value of linear foundation stiffness parameter is less than 3000, which is different from the behaviors of symmetrically supported (pinned–pinned and fixed–fixed) beams. As we expect that the non-linear foundation stiffness parameter has no sharp influence on the critical buckling temperature and it has a slight effect on the post-buckling temperature compared with the linear one.  相似文献   

17.
In this paper, we consider an imperfect finite beam lying on a nonlinear foundation, whose dimensionless stiffness is reduced from 1 to k as the beam deflection increases. Periodic equilibrium solutions are found analytically and are in good agreement with a numerical resolution, suggesting that localized buckling does not appear for a finite beam. The equilibrium paths may exhibit a limit point whose existence is related to the imperfection size and the stiffness parameter k through an explicit condition. The limit point decreases with the imperfection size while it increases with the stiffness parameter. We show that the decay/growth rate is sensitive to the restoring force model. The analytical results on the limit load may be of particular interest for engineers in structural mechanics.  相似文献   

18.
The classical problem of a beam on a tensionless Winkler elastic foundation is reconsidered for the derivation of the conditions of complete contact between the beam and the foundation. This is achieved through the application of modern quantifier elimination software included in the computer algebra system Mathematica together with Taylor–Maclaurin series approximations to the deflection of the beam. Four particular beam problems have been considered in detail and the related QFFs (quantifier-free formulae) have been obtained for several values of the order in the series approximations. Additional approximation possibilities have also been investigated with an emphasis put on the use of the Galerkin method based on weighted residuals. The present results seem to constitute one more interesting application of modern quantifier elimination algorithms and the related software (here in Mathematica) to applied and engineering mechanics.  相似文献   

19.
An expression is derived for equivalent foundation of a viscoelastic half-space interacting with an Euler–Bernoulli beam. It is shown that this equivalent viscoelastic foundation depends on frequencies and wave numbers of the waves in the beam. The real and imaginary part of it substantially varies for phase velocities in between the Rayleigh and shear waves velocities. Radiation of elastic waves occurs for velocities larger than some velocity in that interval. The steady-state beam displacements due to a uniformly moving constant load are calculated for different velocities. The maximum displacement under the load takes place for a velocity of order of the Rayleigh waves velocity.  相似文献   

20.
Based on the assumption of finite deformation, the Hamilton variational principle is extended to a nonlinear elastic Euler-type beam-column structure located on a nonlinear elastic foundation. The corresponding three-dimensional (3D) mathematical model for anaiyzing the nonlinear mechanical behaviors of structures is established, in which the effects of the rotation inertia and the nonlinearity of material and geometry are considered. As an application, the nonlinear stability and the post-buckling for a linear elastic beam with the equal cross-section located on an elastic foundation are analyzed.One end of the beam is fully fixed, and the other end is partially fixed and subjected to an axial force. A new numerical technique is proposed to calculate the trivial solution,bifurcation points, and bifurcation solutions by the shooting method and the Newton-Raphson iterative method. The first and second bifurcation points and the corresponding bifurcation solutions are calculated successfully. The effects of the foundation resistances and the inertia moments on the bifurcation points are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号