首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The LR-115 type-II plastic track detector has been used for measuring the indoor radon levels in the dwellings of some villages of Punjab and Himachal Pradesh. In Punjab, the villages surveyed are Rampura Phul, Lehra Mahabat and Pitho (villages in Bathinda district), and Amritsar city. The average indoor radon levels in these areas are found to vary from 64 to 152 Bq/m3, which are quite within the safe limits recommended by International Commission on Radiological Protection (Ann. ICRP 23(2)). The indoor radon levels have also been measured in the dwellings of Hamirpur district of Himachal Pradesh. The villages surveyed in this area are Nukhel, Badarn, Galore-Khas, Har-Upper, Tikker Brahamana and Awah-Lower where radon concentration has been found to vary from 261 to 724 Bq/m3. These values are higher than the recommended limit.  相似文献   

2.
In the present study measurement of radon and its progeny concentration has been undertaken in the buildings constructed in the surroundings of National Hydroelectric Power Corporation (NHPC). LR-115 Type-II solid state nuclear track detectors fixed on a thick flat card were exposed in bare mode. Track etch technique has been used to estimate the radon concentration in the rooms of some buildings. Annual effective dose has been calculated from the radon concentration to carry out the assessment of the variability of expected radon exposure of the population due to radon and its progeny. The radon levels in these dwellings vary from 9±4 to 472±28 Bq m−3 with an average value of 158±14.9 Bq m−3 whereas annual effective dose varies from 0.1±0.04 to 7±0.4 mSv y−1 with an average value of 2.3±0.2 mSv y−1. These values are below the recommended action levels.  相似文献   

3.
Inhalation of radon (Rn-222) and its progeny is one of the most significant sources of natural radiation exposure of the population. Nowadays, high radon exposures have been shown to cause lung cancer and many governments all over the world have therefore recommended that radon exposures in dwellings and indoor workplaces should be limited. Radon levels in buildings vary widely from area to area depending on local geology. This paper presents the results of a long-term survey of radon concentrations carried out from 2005 till 2010 in schools and dwellings of Eastern Sicily, using the solid-state nuclear track detector (SSNTD) technique. The investigated area shows medium-high indoor radon concentrations, higher than the Italian average of about 70 Bq/m3, with peaks of 500 Bq/m3 or more in buildings near active faults. Fortunately, only a small fraction of the measurements, about 1.5% of total, was found greater than EU and Italian action limits for indoor and workplaces.  相似文献   

4.
Radium concentration and radon exhalation rate have been measured in soil samples collected from some areas belonging to upper Siwaliks of Kala Amb, Nahan and Morni Hills of Haryana and Himachal Pradesh states, India using LR-115 type II plastic track detectors. Uranium concentration has also been determined in these soil samples using fission track registration technique. Radium concentration has been found to vary from 5.30 to 31.71 Bq.kg−1, whereas uranium concentration varies from 33.21 to 76.26 Bq.kg−1. The radon exhalation rate in these samples varies from 216.87 to 1298.00 mBq.m−2hr−1 (6.15 to 36.80 mBq.kg−1.hr−1). Most of the samples have uranium concentration above the worldwide average concentration of 35 Bq.kg−1. A good correlation (R 2 = 0.76) has been observed between uranium concentration and radon exhalation rate in soil. The values of uranium, radium and radon exhalation rate in soil are compared with that from the adjoining areas of Punjab.  相似文献   

5.
Indoor radon has been recognized as one of the health hazards for mankind. Building materials constitute the second most important source of radon in dwellings. The common building materials used in the construction of dwellings are studied for radon exhalation rate. The ‘Can’ technique using LR-115 type-II solid-state nuclear track detector has been used for these measurements. The radon exhalation rate in these samples varies from 4.75 m Bq m−2 h−1 (0.14 m Bq kg−1 h−1) for limestone to 506.76 m Bq m−2 h−1 (15.24 m Bq kg−1 h−1) for soil.  相似文献   

6.
ABSTRACT

Radon, thoron and associated progeny measurements have been carried out in 71 dwellings of Douala city, Cameroon. The radon–thoron discriminative detectors (RADUET) were used to estimate the radon and thoron concentration, while thoron progeny monitors measured equilibrium equivalent thoron concentration (EETC). Radon, thoron and thoron progeny concentrations vary from 31?±?1 to 436?±?12 Bq?m–3, 4?±?7 to 246?±?5 Bq?m–3, and 1.5?±?0.9 to 13.1?±?9.4 Bq?m–3. The mean value of the equilibrium factor for thoron is estimated at 0.11?±?0.16. The annual effective dose due to exposure to indoor radon and progeny ranges from 0.6 to 9?mSv?a–1 with an average value of 2.6?±?0.1?mSv?a–1. The effective dose due to the exposure to thoron and progeny vary from 0.3 to 2.9?mSv?a–1 with an average value of 1.0?±?0.4?mSv?a–1. The contribution of thoron and its progeny to the total inhalation dose ranges from 7 to 60?% with an average value of 26?%; thus their contributions should not be neglected in the inhalation dose assessment.  相似文献   

7.
Uranium gets into drinking water when the minerals containing uranium are dissolved in groundwater. Uranium and radon concentrations have been measured in drinking water samples from different water sources such as hand pumps, tube wells and bore wells at different depths from various locations of four districts (Jind, Rohtak, Panipat and Sonipat) of Haryana, India, using the LED flourimetry technique and RAD7, electronic silicon solid state detector. The uranium (238U) and radon (222Rn) concentrations in water samples have been found to vary from 1.07 to 40.25?µg?L?1 with an average of 17.91?µg?L?1 and 16.06?±?0.97 to 57.35?±?1.28?Bq?L?1 with an average of 32.98?±?2.45?Bq?L?1, respectively. The observed value of radon concentration in 43 samples exceeded the recommended limits of 11?Bq?L?1 (USEPA) and all the values are within the European Commission recommended limit of 100?Bq?L?1. The average value of uranium concentration is observed to be within the safe limit recommended by World Health Organization (WHO) and Atomic Energy Regulatory Board. The annual effective dose has also been measured in all the water samples and is found to be below the prescribed dose limit of 100?µSv?y?1 recommended by WHO. Risk assessment of uranium in water is also calculated using life time cancer risk, life time average daily dose and hazard quotient. The high uranium concentration observed in certain areas is due to interaction of ground water with the soil formation of this region and the local subsurface geology of the region.  相似文献   

8.
Passive integrating solid state nuclear track detectors (SSNTDs) were used to study the Radon-222 (Rn) concentrations in Indian dwellings. The study was made in 300 dwellings in the cities of Lucknow and Kanpur in northern India. The influence of some factors e.g. age of the house, number of floors and ventilation conditions, etc. on indoor Rn concentrations were studied. The equilibrium factor in 65 dwellings were also investigated. Average Rn concentrations in living rooms were found to be 34±8 Bq.m−3 and 40±10 Bq.m−3 respectively, with equilibrium factors of 0.35 and 0.38. Assuming an occupancy factor of 0.8, the annual average effective dose equivalents in living rooms of the two places are estimated as 0.8 and 1.0 mSv respectively.The average life-time risks of lung cancer for radon exposure of the Lucknow and Kanpur populations at home would be about 0.26% and 0.34% respectively and the mean relative loss of life expectancies were 0.06% and 0.074% respectively.  相似文献   

9.
Seasonal (winter-summer) indoor and soil radon comparison is made in two villages in Najran region, south west of Saudi Arabia, using CR-39 Dosimeter. Summer indoor radon concentrations were measured in the villages of Fara Al-Jabal and Hadadah. The respective winter-summer average values of 42 ± 4 Bq m−3 and 74 ± 5 Bq m−3 are measured in Fara Al-Jable village and the average values of 47 ± 4 Bq m−3 and 76 ± 5 Bq m−3 are measured in Hadadah village. The respective winter-summer soil values are 1.40 ± 0.21 kBq m−3 and 0.99 ± 0.04 kBq m−3 in Fara Al-Jabal village while those measured in Hadadah village are 2.90 ± 0.17 kBq m−3 and 1.40 ± 0.66 kBq m−3. Indoor radon levels are found to be seasonal dependent while that of soil are found seasonal and location dependent. Meteorological and geological factors are expected to have caused the measured significant differences in radon levels in dwellings and soil in the two villages.  相似文献   

10.
This work presents indoor radon measurements in 42 dwellings in the city of Megalopolis, Southern Greece, located in the vicinity of 2 lignite-fired power plants and examines the effect of season, floor level and age of the dwellings on indoor radon concentration. The radon measurements have been carried out using the LR-115, type II and CR-39 alpha track detectors in “closed-can” geometry. The average annual indoor radon concentration (GM) was found to be 52 Bq m?3, which is well below the recommended action level of the European Union. This value corresponds to an annual effective dose to the population of 1.3 ± 0.4 mSv. Season and age of the examined dwellings represent factors that affected significantly the indoor radon in Megalopolis, while the effect of floor level appeared to be not significant. Radium activity concentration values, measured by γ-ray spectrometry in 20 sub-samples of six soil cores (60–135 cm depth), collected from the surrounding area of the city, were found to be consistent with the Greek and world average values. Based on the results of this study, it is concluded that the effect of the lignite-fired power plants on indoor radon concentration in Megalopolis’ dwellings was not significant.  相似文献   

11.
Radon concentration in soil-gas and in the atmospheric air has been studied around Mysore city (12°N and 76°E) using Solid State Nuclear Track Detectors. The radon in soil-gas is found to be higher at a depth of 1 m than at a depth of 0.5 m from the ground surface. The higher radon concentration in soil was observed near Chamundi Hills and Karigatta village with average values of 5.94 kBq.m−3 and 5.32 kBq.m−3 at 1 m depth from the ground surface. Seasonal variations in radon in soil gas shows that, the concentration is lower in summer with an average value of 0.60 kBq.m−3 and higher in monsoon season with an average value of 4.70 kBq.m−3. Estimation of 226Ra in soil at these locations is also made using HPGe detector. The activity of 226Ra, varies from 4.82 to 74.23 Bq.kg−1 with an average value of 32.11 Bq.kg−1. Radon concentrations in soil-gas shows good correlation with the activity of 226Ra in soil with a correlation coefficient of 0.76  相似文献   

12.
Radon was measured in soil-gas and groundwater in the Budhakedar area of Tehri Garhwal, India in summer and winter to obtain the seasonal variation and its correlation with radon exhalation rate. The environmental surface gamma dose rate was also measured in the same area. The radon exhalation rate in the soil sample collected from different geological unit of Budhakedar area was measured using plastic track detector (LR-115 type II) technique. The variation in the radon concentration in soil-gas was found to vary from 1098 to 31,776 Bq.m−3 with an average of 7456 Bq.m−3 in summer season and 3501 to 42883 Bq.m−3 with an average of 17148 Bq.m−3 in winter season. In groundwater, it was found to vary from 8 to 3047 Bq.l−1 with an average value 510 Bq.l−1 in summer and 26 to 2311 Bq.l−1 with an average value 433 Bq.L−1 in winter. Surface gamma dose rate in the study area varied from 32.4 to 83.6 μR.h−1 with an overall mean of 58.7 μ-R.h−1 in summer and 34.6 to 79.3 μR.h−1 with an average value 58.2 μR.h−1 in winter. Radon exhalation rate from collected soil samples was found to vary from 0.1 × 10−5 to 5.7 × 10−5 Bq.kg−1.h−1 with an average of 1.5 × 10−5 Bq.kg−1.h−1 in summer season and 1.7 × 10−5 to 9.6 × 10−5 Bq.kg−1.h−1 with an average of 5.5 × 10−5 Bq.kg−1.h−1. A weak negative correlation was observed between radon exhalation rate from soil and radon concentration in the soil. Radon exhalation rate from the soil was also not found to be correlated with the gamma dose rate, while it shows a positive correlation with radon concentration in water in summer season. Inter-correlations among various parameters are discussed in detail.   相似文献   

13.
Radon and thoron isotopes are responsible for approximately half of the average annual effective dose to humans. Although the half-life of thoron is short, it can potentially enter indoor air from adobe walls. Adobe was a traditional construction material in the Great Hungarian Plain. Its major raw materials are the alluvial sediments of the area. Here, seasonal radon and thoron activity concentrations were measured in 53 adobe dwellings in 7 settlements by pairs of etched track detectors. The results show that the annual average radon and thoron activity concentrations are elevated in these dwellings and that the proportions with values higher than 300 Bq m?3 are 14–17 and 29–32% for radon and thoron, respectively. The calculated radon inhalation dose is significantly higher than the world average value, exceeding 10 mSv y?1 in 7% of the dwellings of this study. Thoron also can be a significant contributor to the inhalation dose with about 30% in the total inhalation dose. The changes of weather conditions seem to be more relevant in the variation of measurement results than the differences in the local sedimentary geology. Still, the highest values were detected on clay. Through the year, radon follows the average temperature changes and is affected by the ventilation, whereas thoron rather seems to follow the amount of precipitation.  相似文献   

14.
The activity concentrations of the natural radionuclides namely 238Ra, 232Th and 40K are measured for soil samples collected from different locations of Faridkot and Mansa districts of Punjab. HPGe detector, based on high-resolution gamma spectrometry system is used for the measurement of activity concentration. The range of activity concentrations of 226Ra, 232Th and 40K in the soil from the studied areas varies from 21.42 Bq kg−1 to 40.23 Bq kg−1, 61.01 Bq kg−1 to 142.34 Bq kg−1 and 227.11 Bq kg−1 to 357.13 Bq kg−1 with overall mean values of 27.17 Bq kg−1, 95.22 Bq kg−1 and 312.76 Bq kg−1, respectively. Radium equivalent activities are calculated for the analyzed samples to assess the radiation hazards arising due to the use of these soil samples in the construction of dwellings. The absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranges between 9.87 and 18.55, 38.01 and 88.68 and 9.40 and 14.79 nGy h−1, respectively. The total absorbed dose in the study area ranges from 61.10 nGy h−1 to 112.86 nGy h−1 with an average value of 84.80 nGy h−1. The calculated values of external hazard index (H ex) for the soil samples of the study area range from 0.36 to 0.68. Since these values are lower than unity, according to the Radiation Protection 112 (European Commission, 1999) report, soil from these regions is safe and can be used as construction material without posing any significant radiological threat to population. The corresponding average annual effective dose for indoor and outdoor measured in the study area are 0.42 mSv and 0.10 mSv respectively.   相似文献   

15.
CR-39 and LR-115 plastic nuclear track detectors in the can-technique have been employed in the field measurements of radon exhalation, Ra-226 and U-238 content in dry-soil air at numerous regions in Sudan (the Blue and White Nile and Mogran regions). Measurements gave an average radon exhalation from the soil to the atmosphere and Ra-226 content of (23.4 ± 2.60) kBq · m?2 and (123 ± 13.65) Bq · kg?1 respectively. A polyethylene permeable membrane cover was used to eliminate the contribution of thoron activity inside the can. Assuming a radioactive equilibrium between the U-series, the average U-238 content in the soil was found to be (9.92 ± 1.01) ppm. This survey may be used for uranium prospection in soil.  相似文献   

16.
Uranium concentrations in the drinking water samples collected mainly from hand pumps along the Amritsar to Bathinda track are presented. Uranium concentration values in these samples show a wide range of variation depending upon different factors like source, location, depth and local geology etc. The observed uranium content in water samples has been found to be varying from 0.9 ± 0.08 to 63 ± 0.21 ppb and even the radon activity in ground water observed in our earlier survey carried out in this area has been found to be increasing from Amritsar towards Bathinda. The higher values were observed from the ground water samples particularly of the areas falling in belt from Zira to Maur towards the Haryana border. The values observed at certain locations are found to be higher than the highest recommended value of 15 ppb [1]. The high uranium concentration observed particularly in certain areas along this track can be attributed due to interaction of ground water with the soil formation of this region and the local subsurface geology of the region.   相似文献   

17.
18.
The influences on indoor radon concentrations in Riyadh, Saudi Arabia survey was carried out for 786 dwellings. The measurements were obtained by using a passive integrating ionization system with an E-Perm® Electret ion chamber. Radon levels ranged from 1 to 195 Bq m−3, with a mean value of 24.68 Bq m−3, the geometric mean and the geometric standard deviation are 21 and 2 respectively. 98.5% of the results were below the action level recommended by WHO of 100 Bq.m−3. The results were found to vary substantially due to types of houses and rooms, ventilation, seasons and building materials. Radon concentrations were higher in houses with no ventilation systems, and central air conditioners, and were relatively lower in well ventilated houses with red bricks and water air conditioners.  相似文献   

19.
In Italy an extensive survey has been carried out with the aim to evaluate annual average radon concentration in underground workplaces.The survey covered 933 underground rooms located in 311 bank workplaces spread throughout in all Italian regions; at this scope the sampling was stratified random in order to be representative on national scale. The annual radon concentration was estimated by using passive radon dosemeters (NRPB/SSI type holder and CR-39 as detector): the devices were exposed for a period of about 3 months and 4 cycles were performed to cover a solar year. The radon levels in underground workplaces ranged from 27 to 4851 Bq/m3 with an overall mean value of 153 Bq/m3. As expected, radon distribution is not uniform throughout Italy: in several regions high radon annual averages have been found, confirming previous surveys.The analysis of data shows a high variability among regions and intra-region but low spread among rooms belonging to the same workplace.About 5% of underground workplaces displayed radon concentration exceeding 400 Bq/m3, and the 4.4% exceeds 500 Bq/m3, the national action level for the exposure to natural radioactivity in workplaces.  相似文献   

20.
《Radiation measurements》2009,44(3):306-310
A procedure is described in which soil gas is utilized as an alternative to the 226Ra source for the supply of the radon gas required to fill a radon chamber where radon-measuring devices are calibrated. The procedure offers opportunities to vary the radon concentration within the chamber around an average value of about 500 Bq/m3, which is considered to be sufficient for calibrating indoor radon detectors. The procedure is simple and the radon source does not require radiation protection certification (for import and/or use), unlike the commercially produced standard radioactive (226Ra) sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号