首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于耦合模理论,首先研究了镀膜长周期光纤光栅(LPFG)高阶包层模的模式转换,划分了高阶包层模的非模式转换区及模式转换区。分析了高阶包层模有效折射率随薄膜厚度增加的响应特性,包层模谐振波长在模式转换区的偏移量要大于非模式转换区。在此基础上,研究了不同包层半径下高阶包层模谐振波长随光栅周期的变化情况,结果表明,相同包层半径下模式转换区内双峰间距的偏移量大于非模式转换区;无论在模式转换区还是非模式转换区,包层半径的减小将增加双峰间距的偏移量。最后分析了不同包层半径下的高阶包层模双峰透射谱在模式转换区及非模式转换区内的折射率响应,进而提出了薄包层镀膜LPFG的优化设计方案,当选定敏感膜层厚度及折射率处于镀膜LPFG的模式转换区内,光栅周期靠近相位匹配转折点时,将得到灵敏度高于传统LPFG双峰传感器的镀膜LPFG折射率型双峰传感器;而减小包层半径,将进一步提高传感器的分辨本领。  相似文献   

2.
镀高折射率纳米膜的长周期光纤光栅特性研究   总被引:1,自引:0,他引:1  
针对镀高折射率纳米膜的长周期光栅,建立了传感理论模型,研究了长周期光栅的谐振波长与纳米膜厚度及外界折射率的关系,给出不同纳米膜厚度下长周期光栅不同包层模式重组特性.研究发现,当长周期光栅外面镀上一层沿角向均匀分布的纳米膜时,随着膜厚变化会出现包层模分布的明显调制;适当选择镀膜参数和外界介质折射率,最低次包层模式HE1,2会成为镀膜层中的导模,其他的包层模式将会发生模式转换现象;对于较低次包层模式(如HE1.6),在模式转换的时候存在两步转换,而高次的包层模只有一步转换(如HE1.14).同时给出了包层模式转换对外界折射率响应的关系:当膜层厚度增加时,长周期光栅模式转换现象移至低折射率区域.  相似文献   

3.
依据包层模有效折射率的概念及包层模场的光功率密度分布,重新审视了镀膜长周期光纤光栅"模式转换"现象,对"模式转换"给出了新的物理图像.通过修正镀膜长周期光纤光栅包层模有效折射率的范围,指出有效折射率呈现的台阶式增长是各次包层模自身属性的反映,不存在高次模式替代低次模式的过程,并将"模式转换区"重命名为"模式垒区".通过分析包层模场的光功率密度分布,指出"模式转换区"较低次包层模式进入薄膜层传输说法的不合理性.研究表明,当薄膜厚度达到一定厚度时,包层模场光功率分布将愈加集中在薄膜层内部,但并非沿着薄膜层传输.讨论了镀膜长周期光纤光栅传感器薄膜参数优化的问题,在修正的包层模有效折射率范围和未修正的包层模有效折射率范围的情况下分别进行优化,并对优化结果进行比较,结果表明两种情况下的优化结果存在较大的偏差.从机理上解释了修正薄层模有效折射率范围后的优化结果的正确性,为设计高灵敏镀膜长周期光纤光栅传感器提供了新的理论指导.  相似文献   

4.
长周期光纤光栅(LPFG)传感器具有非常广泛的应用价值,而有效解决物理量交叉敏感问题是其实用化的关键。基于LPFG对包层外介质折射率和厚度的敏感性,提出一种双段多层折射率横向分布结构的新型LPFG传感器的设计,并利用耦合模理论和传输矩阵方法分析了镀膜材料折射率、膜层厚度和镀层长度对新型LPFG传感器光谱特性的影响。软件仿真结果证明,这种LPFG由于结构设计上的特殊性,将使LPFG的谐振峰发生分裂,即一个透射峰分裂为两个。由于两个分裂峰对应力和温度的灵敏度不同,利用该结构的LPFG作为传感器,可以实现温度、应力等物理量的同步测量,从而解决LPFG传感器的交叉敏感问题。  相似文献   

5.
利用长周期光纤光栅(LPFG)中的双峰谐振效应,结合表面等离子体共振(SPR)传感器的高灵敏度,提出了一种新型镀金属光纤光栅液体浓度传感器.采用双包层结构模型和耦合模理论,分析r镀金属长周期光纤光栅双峰效应的谐振特性,环境折射率的传感特性以及金属膜厚对双峰LPFG灵敏度的影响.实验上制作了具有双峰效应的镀银膜长周期光纤...  相似文献   

6.
陈海云  顾铮筅  杨颖 《物理学报》2012,61(20):179-185
镀膜长周期光纤光栅(LPFG)工作于相位匹配转折点时纤芯模与高次包层模的耦合产生单个宽带损耗峰,其3 dB带宽取决于纤芯模和包层模之间的色散差、光栅长度以及中心波长.研究表明,薄膜折射率和厚度的变化将影响纤芯模与包层模之间的色散差,从而影响损耗峰的3 dB带宽,同时损耗峰中心波长亦随之移动.薄膜折射率为1.57,厚度为350 nm时,损耗峰带宽可达302 nm.减小光栅长度在保证中心波长损耗大于6 dB的前提下可使损耗峰3 dB带宽增大至334 nm.进一步研究表明,在均匀LPFG中偏离光栅中点的适当位置引入单个π相移可以使带宽增大至372 nm以上.  相似文献   

7.
基于四层光纤模型,采用数值模拟方法,研究了镀膜长周期光纤光栅的膜层折射率及厚度等参数对其传输谱特性的影响。结果表明,随膜厚增加,各包层模式有效折射率增大,谐振波长向短波区漂移。当膜厚达到一定数值后,有效折射率及谐振波长急剧变化,长周期光纤光栅频谱出现模式转换现象,模式跳变转折点对应最优薄膜厚度,不同薄膜介质对应不同的最优膜厚,研究对提高长周期光纤光栅传感器的敏感度具有重要的指导意义。  相似文献   

8.
彭勇  程轶 《光散射学报》2007,19(2):190-194
采用四层阶跃折射率几何模型,研究了镀有SiO2-WO3薄膜LPFG在溶液折射率测量方面的特性,并与未镀膜情况进行了比较。当LPFG包层外镀膜后,测量纯水、CaCl2溶液(浓度为450gL-1,折射率为1.4056)时波长漂移量分别是未镀膜时的1.67和2.55倍;谐振峰的损耗变化分别是未镀膜时的4.44和2.82倍;在1.36-1.38折射率范围内,传感器的灵敏度和分辨率分别是216.58nm和0.82×10-5,是镀膜前的3.27和0.30倍,说明镀膜后LPFG对溶液折射率测量的灵敏度和分辨率得到了很大的提高。  相似文献   

9.
给出了镀膜长周期光纤光栅芯层模式和包层模式耦合的耦合系数的详细表达式,应用此表达式对镀膜长周期光纤光栅的耦合系数的特性进行了较为详细的研究。研究发现:1)同次模式的耦合系数随薄膜厚度变化而变化,在某些厚度下,奇次模式耦合的耦合系数与偶次模式耦合的耦合系数几乎相等;2)在某些厚度处,交流耦合系数会有跳变发生;3)交流耦合系数随环境折射率的变化而变化,并且当环境折射率靠近光纤包层折射率时交流耦合系数会有急剧跳变发生。  相似文献   

10.
徐艳平  顾铮 《光学技术》2006,32(2):177-179
通过求解严格的耦合模理论建立的三包层结构长周期光纤光栅特征方程,研究了三包层长周期光纤光栅谐振波长与第二包层(薄膜)的折射率和厚度之间的关系。结果发现,随着膜厚及折射率的增大,谐振波长偏移的变化分成三个区域,这与Nicholas D R的实验结果相符。利用HE/EH模的判据数,对三个区域的模特性进行了分析,给出了区域划分的衡量标准。给出了在不同薄膜参数时的长周期光纤光栅透射谱,发现一阶低次HE模式的耦合强度要远大于一阶低次EH模式。  相似文献   

11.
长周期光纤光栅的折射率敏感特性   总被引:1,自引:0,他引:1  
利用光波导的耦合模理论分析了长周期光纤光栅(LPFG)的折射率传感特性,给出了LPFG 的谐振波长相对于环境折射率变化时的漂移量解析表达式.对 LPFG 的折射率传感特性进行了数值模拟.结果表明:在光栅周期不变的情况下,当包层折射率小于且接近外界环境折射率时,波长的漂移量增大,且对应的模次越高、包层半径越小、包层折射率越小,波长漂移量越大,即 LPFG 对应于外界折射率传感灵敏度得到显著提高;当外界环境折射率大于包层折射率时,光栅的谐振波长将近似不变.  相似文献   

12.
陈海云  顾铮天  杨颖 《光学学报》2012,32(5):506002-52
研究了镀膜相移长周期光纤光栅(PS-LPFG)工作于相位匹配转折点(PMTP)时的大间隔双峰滤波特性。LPFG工作于PMTP时,纤芯模与高次包层模耦合产生的损耗峰3dB带宽可达288nm以上,在此LPFG中点引入单个π相移时在中心波长两侧出现的两个阻带峰间隔达388nm,远大于低次包层模耦合π相移LPFG的双峰间隔。在LPFG中均匀地引入M(M>1)个π相移时,双峰间隔随M的增大而增大,M为奇数时,中心波长损耗为0;M为偶数时,中心波长损耗随M的增大而减小。薄膜折射率与厚度的增加都将使两个阻带峰向短波长方向移动并增大双峰间隔。光栅长度的增大在改变双峰峰值损耗的同时使双峰间隔逐渐减小。  相似文献   

13.
基于薄膜参量变化引起的长周期光纤光栅模式重组机制,系统研究了光纤包层半径变化对长周期光纤光栅薄膜传感器特性的影响.结果表明,在相同薄膜参量下包层半径的减小可有效提高传感器的灵敏度,并增大传感器对薄膜参量变化响应的动态范围,但减小包层半径对传感器的增敏效应随薄膜厚度的增大而减小.通过氢氟酸腐蚀减小包层半径,采用静电自组装法在包层表面镀制PAH/PAA薄膜,镀膜过程中光纤光栅输出的光谱数据证实了理论分析结果.实验结果表明:半径为39μm、膜厚为424nm的长周期光纤光栅薄膜传感器在溶液pH值检测中的灵敏度达3.93nm/pHU,比标准包层时的灵敏度提高了1倍.  相似文献   

14.
彭勇  王轶卓 《光散射学报》2005,17(2):132-136
首先利用耦合模理论研究了长周期光纤光栅LPFG折射率敏感特性,数值计算了长周期光纤光栅透射谱谐振波长与环境介质折射率的关系。其次分析了半导体氧化物气敏膜光学特性机理,当气体与薄膜接触时,气体会使敏感膜的消光系数、吸收系数和相应的折射率发生变化。基于上述两点,提出可将气敏膜涂于光栅表面,利用气敏膜的折射率随环境气体成分和浓度变化而变化的特性,从而影响LPFG透射谱谐振波长的变化,通过检测波长的变化达到探测气体成分和浓度的目的。由于长周期光纤光栅对环境介质折射率的灵敏度高于光纤,且其传感信号属于波长调制,测量信号不受光强波动及光纤损耗的影响,因此其灵敏度比强度型光纤气体传感器高。  相似文献   

15.
根据倾斜光纤光栅(TFBG)和表面镀金的TFBG传感器测量折射率的基本原理,通过OptiGrating软件模拟了不同浓度溶液下TFBG的透射谱和芯层模与某阶包层模耦合引起的谐振峰,初步得出了TFBG各阶包层模随着外界折射率的增大而向右偏移、在一定的传感范围内中心波长与外界折射率呈线性关系的结论。用小型离子溅射仪对TFBG镀45 nm厚度左右的金膜,并用扫描电镜在微观上观察镀膜效果。通过不同浓度下的NaCl溶液、MgCl2溶液、CaCl2溶液实验,对比研究了裸TFBG和镀金TFBG传感器对溶液折射率的传感特性。从而验证了模拟仿真得出的结论并定量分析得知:镀金后具有表面等离子体共振的TFBG溶液折射率灵敏度大于500 nm·RIU-1,而裸TFBG为2 nm·RIU-1左右,大约提高了200~300倍,且在一定范围内中心波长与溶液折射率的线性拟合度都在0.99以上。  相似文献   

16.
矩形折射率调制型薄膜长周期光纤光栅特性研究   总被引:1,自引:0,他引:1  
镀膜长周期光纤光栅传感器是目前光纤光栅传感研究的一个热点,但关于此类传感器模型的全面的理论分析目前还很少。本文基于严格的四层模型,从理论上对芯层折射率调制为矩形波调制的薄膜长周期光纤光栅的特性进行了详细的分析。在充分考虑材料色散对光纤芯层和包层的影响后,对薄膜参数、占空比和环境折射率的变化对镀膜长周期光纤光栅的谱特性的影响进行了数值研究。研究结果表明,薄膜参数对透射谱有重要影响,合理设计薄膜厚度可以获得较佳的损耗峰。研究还发现,镀膜后占空比对透射谱的影响减小,而对环境折射率变化的敏感度增加。在占空比为0.5时光栅具有最大的损耗峰值。  相似文献   

17.
殷海波  张敏  刘阳  廖延彪  李德杰 《光子学报》2007,36(11):2028-2032
提出了一种新的基于三层阶跃折射率光纤的微扰模型,分析长周期光纤光栅(Long Period Fiber Grating,LPFG)薄膜传感器,并从β2稳定性定理出发推导出适用于薄膜传感器的微扰公式.该模型不仅能够清晰反映薄膜参量与包层模传播常量变化量之间的关系,而且在计算量和计算难度远低于四层波导模型情况下获得与严格求解结果相当的计算准确度.考虑数值计算本身引入的计算误差,该模型能够满足定性和半定量理论分析需要.最后通过长周期光纤光栅液态水膜的挥发实验对该模型进行了初步验证.  相似文献   

18.
杨颖  顾铮天 《光学学报》2012,32(10):1006006-79
基于光纤光栅的模式耦合理论,采用传输矩阵法对啁啾长周期光纤光栅(LPFG)的超宽带滤波特性进行了分析。研究表明当啁啾LPFG的纤芯模同时与同向传输的多个阶次的包层模发生耦合,且与多个不同阶次包层模对应的谐振峰交叠时,其传输谱带宽可扩展到500nm以上,可用做超宽带带阻滤波器。传输谱带宽随模式序数、啁啾系数、光栅长度、周期和折射率调制量的增加单调递增,但随光纤包层半径的增大单调递减。采用高斯折射率切趾技术抑制了传输谱旁瓣,为设计超宽带滤波器提供了新的方法。  相似文献   

19.
详细分析了光子晶体光纤包层气孔塌缩对光纤传输特性的影响,建立了包层气孔塌缩结构模型,利用有限元法和局域耦合模理论对环形结构改变下形变区域的有效折射率分布和模式耦合系数进行了计算,得到了调制区域各模式的有效折射率和耦合系数分布.研究了基模和包层模的耦合规律,得到了纤芯基模(LP01)和包层模(LPll,LP02)耦合下的...  相似文献   

20.
采用严格的耦合模理论,建立了两层膜系长周期光纤光栅复特征方程,用微扰法对复特征方程进行求解,结果和D.V.Ignacio的结论相符.求得的谐振波长表明其随膜层厚度和膜层折射率变化明显,受消光系数影响很小.重点提出了两种途径来优化膜层参量组合,以获得较大的谐振波长偏移量,计算结果显示,参量组合取值为(h_3=122.76 nm,h_4=400 nm)和(n_3=1.572 2,h_4=400 nm)时,谐振波长偏移量分别为10.35 nm和11.74 nm,远高于只镀一层敏感膜LPFG的偏移量2.78 nm,从而证明敏感膜层厚度(h_4)较大的参量组合可提高传感器的灵敏度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号