首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The spectral-luminescent characteristics of newly synthesized styrylcyanine dyes on the base of dyes Sbo ((E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]oxazol-3-ium iodide) and Sil ((E)-2-(4-(dimethylamino)styryl)-1,3,3-trimethyl-3H-indolium perchlorate) in aqueous solutions without and in the presence of bovine serum albumin (BSA) were studied. It was established that the absorption spectra of dyes Tol-6, Dbo-10 and Dil-10 with increasing amount of BSA appear new bands with λmax = 505 nm, λmax = 512 nm and λmax = 566 nm, respectively, whose intensity increases in proportion to the amount of albumin. The intensity of the glow of the main band of fluorescence in the presence of BSA sharply increases. The binding constant (K) and the number of binding sites (N) of studied dyes with BSA were determined. The dependence of binding constants with BSA on the dipole moment of dye molecules was determined, which indicates that besides electrostatic forces of attraction between molecules styrylcyanine dyes with BSA, hydrophobic interactions are essential.  相似文献   

2.
The interaction of tosufloxacin tosylate (TSFX) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy, UV–vis spectroscopy and FT-IR spectroscopy. The results indicated that the intrinsic fluorescence of BSA was quenched by TSFX through a static quenching mechanism, and the effective binding constants (Ka) were obtained by means of the modified Stern–Volmer equation. Thermodynamic parameters showed that electrostatic interaction was mostly responsible for the binding of TSFX to BSA. The binding distance (r) between TSFX and Trp-212 was determined to be 3.90 nm according to Föster non-radiative energy transfer theory. BSA had a single class of binding site at Sudlow' site I in subdomain IIA for TSFX. The effects of TSFX on the conformation of BSA were analyzed by synchronous fluorescence spectra and three-dimensional fluorescence spectra, and the results exhibited that the hydrophobicity of tryptophan microenvironment was decreased. In FT-IR spectra, Fourier self-deconvolution, secondary derivative and the curve-fitting process were carried out to obtain the components of BSA secondary structure at 298 K and 310 K. The full basic data indicated that the presence of TSFX resulted in α-helix and β-sheet changing into β-turn and random, which displayed that TSFX induced the unfolding of the polypeptides of BSA.  相似文献   

3.
Colistin sulfate (CS) can quench the fluorescence of bovine serum albumin (BSA) in an aqueous solution at pH 7.40. The static fluorescence-quenching process between BSA and CS was confirmed and the binding constant, the number of binding sites and thermodynamic data for the interaction between BSA and CS were also obtained. Results showed that the order of magnitude of binding constant (Ka) was 104, and the number of binding site (n) in the binary system was approximately equal to 1; electrostatic force played an important role on the conjugation reaction between BSA and CS. On the basis of the Förster theory of the resonance energy transfer, the binding distance (r) between CS and BSA was less than 7 nm. Comparing the quenching of protein fluorescence excited at 280 nm and 295 nm and from the site marker replacement experiments, it was shown that the primary CS binding site was located in the sub-domain IIA (site I) of BSA. Synchronous fluorescence spectra clearly revealed that the binding of CS with BSA can induce conformation changes in BSA. In addition, the effects of common metal ions on the binding constants of CS–BSA complex were also discussed. It was shown that, except Cu2+, the high metal ion concentrations improved the CS efficacy.  相似文献   

4.
The interaction between ginkgolic acid (GA, C15:0) and bovine serum albumin (BSA) is investigated by several spectroscopic methodologies. At first, the binding characteristics of GA and BSA are determined by fluorescence emission spectra. It is showed that GA quenches the fluorescence of BSA and the static quenching constant KLB is 11.7891×104 L mol?1 s?1 at 297 K. GA and BSA form a 1:1 complex with a binding constant of 9.12×105 L mol?1. GA binds to the Sudlow's drug binding site II in BSA, and the binding distance between them is calculated as 1.63 nm based on the Förster theory. The thermodynamic parameters indicate that the interaction between BSA and GA is driven mainly by hydrophobic forces. On the other hand, structural analysis indicates that GA binding results in an increased hydrophobicity around the tryptophan residues of BSA as revealed by the synchronous fluorescence spectra, and a decrease in α-helix as revealed by the far-UV CD spectra. In addition, ANS, UV–vis and RLS experiments confirmed that GA binding causes a certain structural changes in BSA. These findings provide the binding information between BSA and GA, and may be helpful for pharmacokinetics and the design of dosage forms of GA.  相似文献   

5.
The interactions of silymarin with bovine serum albumin (BSA) and lysozyme (LYS) were investigated in physiological buffer (pH = 7.4) by fluorescence spectroscopy and UV–vis absorption spectroscopy. The mechanism study indicated that silymarin could strongly quench the intrinsic fluorescence of BSA and LYS through static quenching procedures. At 291 K, the values of the binding constant KA were 4.20×104 and 4.71×104 L mol?1 for silymarin–BSA and silymarin–LYS, respectively. Using thermodynamic equations, the conclusion that hydrophobic and electrostatic forces played an important role in stabilizing complex of silymarin–BSA or silymarin–LYS was obtained. The effects of Cu2+, Mg2+, Ca2+, Fe2+, and Fe3+ on the binding were also studied at 291 K. According to Förster’s nonradiative energy transfer theory, the distances r0 between donor and acceptor were calculated to be 3.36 and 2.71 nm for silymarin–BSA and silymarin–LYS, respectively. Synchronous fluorescence spectra showed that the conformation of BSA and LYS were changed by silymarin.  相似文献   

6.
The three flavonoids including naringenin, hesperetin and apigenin binding to bovine serum albumin (BSA) at pH 7.4 was studied by fluorescence quenching, synchronous fluorescence and UV–vis absorption spectroscopic techniques. The results obtained revealed that naringenin, hesperetin and apigenin strongly quenched the intrinsic fluorescence of BSA. The Stern–Volmer curves suggested that these quenching processes were all static quenching processes. At 291 K, the value and the order of the binding constant were KA (naringenin)=4.08×104<KA (hesperetin)=5.40×104KA (apigenin)=5.32×104 L mol?1. The main binding force between the flavonoid and BSA was hydrophobic and electrostatic force. According to the Förster theory of non-radiation energy transfer, the binding distances (r0) were obtained as 3.36, 3.47 and 3.30 nm for naringenin–BSA, hesperetin–BSA and apigenin–BSA, respectively. The effect of some common ions such as Fe3+, Cu2+, Mg2+, Mn2+, Zn2+ and Ca2+ on the binding was also studied in detail. The competition binding was also performed. The apparent binding constant (KA) obtained suggested that one flavonoid had an obvious effect on the binding of another flavonoid to protein when they coexisted in BSA solution.  相似文献   

7.
A novel 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide (DON) has been synthesized as a spectrofluorimetric probe for the determination of proteins. Photophysics of DON in different solvents has been delineated in this paper. Progressive redshift with polarity of solvents in emission and absorption spectra hints at intramolecular charge transfer. The interactions of DON with serum albumins (i.e., human serum albumin (HSA) and bovine serum albumin (BSA)) were studied by fluorescence and absorption spectroscopy. Fluorescence data revealed that the quenching of HSA/BSA by DON were static quenching and the DON–HSA/BSA complexes were formed. The binding constant (Kb) for HSA and was found to be 8.44×10?4 and 60.26×10?4 M?1 and the number of binding sites (n) were 1.00 and 1.40, respectively. The thermodynamic parameters, ΔH and ΔS, for the DON–HSA system was calculated to be ?14.83 kJ mol?1 and 23.61 J mol?1 K?1, indicating the hydrogen bonds and hydrophobic interactions were the dominant intermolecular force. ΔH and ΔS for the binding of DON with BSA was ?60.08 kJ mol?1 and ?90.7441 mol?1 K?1, suggesting the hydrogen bonds and van der Waals force played the main role in the interaction. The results of displacement experiments showed that DON bound HSA/BSA occurred at the Trp-214 proximity, located in subdomain IIA of the serum albumin structure (the warfarin binding pocket). The effect of DON on the conformation of HSA was also analyzed by synchronous and three-dimensional fluorescence spectra. The fluorescence of DON could be quenched by HSA, based on which, a fluorometric method for the determination of microamount protein using DON in the medium of HCl?Tris buffer solution (pH=7.4) was developed. The linear range of the calibration curves was 0.1–10.0 μM for HSA, 0.1–11.2 μM for BSA and 0.2–9.7 μM for egg albumin (EA). The detection limit (3σ) for HSA was 1.12×10?10 M, for BSA it was 0.92×10?10 M and for EA it was 4.33×10?10 M. The effect of metal cations on the fluorescence spectra of DON in ethanol was also investigated. The method has been applied to detect the total proteins in human serum samples and the results were in good agreement with those reported by the hospital.  相似文献   

8.
Centrin is a low molecular mass (20 KDa) protein that belongs to the EF-hand superfamily. In this work, the interaction between the Tb3+-saturated C-terminal domain of Euplotes octocarinatus centrin (Tb2-C-EoCen) and 2-p-toluidinylnaphthalene-6-sulfonate (TNS) was investigated using difference UV–vis spectra and the fluorescence spectra methods. In 100 mM N-2-hydroxy-ethylpiperazine-N-2-ethanesulfonic acid (Hepes) at pH 7.4, with the addition of Tb2-C-EoCen, four new peaks were observed at 265 nm, 278 nm, 317 nm and 360 nm by absorptivity compared with blank solution of TNS. At the same time, the reaction could be measured by fluorescence spectra. The fluorescence emission of TNS was shifted from 480 nm to 445 nm in the presence of Tb2-C-EoCen. Meanwhile, its fluorescence intensity was increased markedly. The 1:1 stoichiometric ratio of C-EoCen to TNS was confirmed by fluorescence titration curves. The conditional binding constants of TNS with C-EoCen and Tb2-C-EoCen were calculated to be log K(C-EoCen-TNS)=5.32±0.04  M?1 and log K(Tb2-C-EoCen-TNS)=5.58±0.12 M?1, respectively. In addition, the protein of Tb2-C-EoCen binding with melittin was also studied. Based on the fluorescence titration curves, the 1:1 stoichiometric ratio of Tb2-C-EoCen to melittin was confirmed. And the conditional binding constant of C-EoCen with melittin was calculated to be log Ka′=6.79±0.17 M?1.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(6):1994-2009
Degradation of five textile dyes, namely Reactive Red 141 (RR 141), Reactive Blue 21 (RB 21), Acid Red 114 (AR 114), Acid Blue 113 (AB 113) and Basic Violet 16 (BV 16) in aqueous solution has been carried out with ultrasound (US) and in combination with rare earth ions (La3+ and Pr3+). Kinetic analysis of the data showed a pseudo-first order degradation reaction for all the dyes. The rate constant (k), half life (t1/2) and the process efficiency (φ) for various processes in degradation of dyes under different experimental conditions have been calculated. The influence of concentrations of dyes (16–40 mg/L), pH (5, 7 and 9) and rare earth ion concentration (4, 12 and 20 mg/L) on the degradation of dyes have also been studied. The degradation percentage increased with increasing rare earth amount and decreased with increasing concentration of dyes. Both horn and bath type sonicators were used at 20 kHz and 250 W for degradation. The sonochemical degradation rate of dyes in the presence of rare earths was related to the type of chromophoric groups in the dye molecule. Degradation sequence of dyes was further examined through LCMS and Raman spectroscopic techniques, which confirmed the sonochemical degradation of dyes to non-toxic end products.  相似文献   

10.
The spectral properties such as singlet absorption, molar absorptivity, emission spectra, fluorescence quantum yield and excited state lifetime of 3-(4′-dimethylaminophenyl)-1-(2-furanyl)prop-2-en-1-one (DMAFP) have been determined in different solvents. DMAFP dye exhibits a large red shift in both electronic absorption and emission spectra as the solvent polarity increases, indicating a large change in the dipole moment of molecules upon excitation. A crystalline solid of DMAFP gives an excimer like emission at 566 nm due to the excitation of molecular aggregates. This is expected from the idealized crystal structure of the dye that belongs to the B-type class of Steven's classification. The ground and excited state protonation constants of DMAFP are calculated and amounted to 1.71 and 8.3, respectively. DMAFP acts as a good laser dye upon pumping with nitrogen laser (λex=337.1 nm) in chloroform, methylene chloride and dioxane and gives laser emission in the range 460–590 nm. The laser parameters such as the tuning range, gain coefficient (α), emission cross section (σe) and half-life energy (E1/2) are calculated. The photoreactivity and net photochemical quantum yield of DMAFP in chloromethane solvents are also studied.  相似文献   

11.
The interactions of scopoletin to bovine serum albumin (BSA) and human serum albumin (HSA) have been investigated by spectroscopic methods. The fluorescence tests indicated that the formation mechanism of scopoletin–BSA/HSA complexes belonged to the static quenching. The displacement experiments suggested that scopoletin primarily bound to tryptophan residues of BSA/HSA within site I (subdomain IIA). The binding distance of scopoletin to BSA/HSA was 2.38/2.34 nm. The thermodynamic parameters (ΔG, ΔH and ΔS) calculated on the basis of different temperatures revealed that the binding of BSA–scopoletin was mainly depended on van der Waals interaction and hydrogen bond, and yet the binding of HSA–scopoletin was strongly relied on the hydrophobic interaction and electrostatic interaction. The results of synchronous fluorescence, 3D fluorescence, UV–vis absorption, and FT-IR spectra showed that the conformations of BSA and HSA altered with the addition of scopoletin. In addition, the effects of some common ions on the binding constants of scopoletin to proteins were also investigated.  相似文献   

12.
The binding interaction between mangiferin (MGF), which a natural xanthone isolated from mangoes, and bovine serum albumin (BSA) was studied with absorbance and fluorescence spectroscopy, cyclic voltammetry and molecular modeling. The data were analyzed to assess the binding mechanism, effect of pH and ionic strength, conformational changes in the protein and electrical charge transfer involved. The MGF–BSA complex exhibited positive cooperativity with a 1:1 stoichiometry (Kd=0.38 mmol L?1) for the first binding site and a non-saturable binding at high ligand concentrations. Furthermore, the data also suggest an increase in drug bioavailability in the acidic region and relatively low ionic strength values, which are close to physiological levels. The data suggest a specific electrostatic interaction together with hydrophobic effects and H-bonding displayed in MGF binding to the BSA IIA subdomain. Synchronous fluorescence spectra indicate that there are conformational changes in the polypeptide backbone upon ligand binding. Cyclic voltammetry indicates that there is an irreversible charge transfer between MGF and BSA that is modulated by diffusion on the electrode surface, where two electrons are transferred. These results can help the knowledge of the pharmacokinetic activities of natural or chemical xanthone-based drugs.  相似文献   

13.
The photophysical properties such as electronic absorption, molar absorptivity, emission spectra, fluorescence quantum yield and fluorescence lifetime of N,N′-bis(4-pyridyl)-3,4:9,10-perylene bis(dicarboximide) (BPPD) have been measured in different solvents. Both electronic absorption and fluorescence spectra are not sensitive to medium polarity, while the fluorescence quantum yield (?f) is solvent dependent. The ground state geometry has been computed by using density functional theory (DFT), the transition from HOMO to LUMO from perylene core with maximum absorption at 512 nm and HOMO–LUMO energy difference equal 2.53 eV. BPPD dye undergoes molecular aggregation to dimmer or higher aggregates in dimethyl sulfoxide (DMSO). Crystalline solids of BPPD gives excimer-like emission at 676 nm. The fluorescence quenching of BPPD is also studied using hydrated ferric oxide nanoparticle (FeOOH), and the Stern–Volmer rate constants (Ksv) were calculated as 8×106 and 9.2×106 M?1 in ethanol and ethylene glycol, respectively.  相似文献   

14.
Third order nonlinear refractive index of three anthraquinone dyes, i.e., Solvent Blue 59, Solvent Blue 35 and Solvent Green 3 doped in 1294-1b nematic liquid crystal (NLC) were studied by the single beam Z-scan technique using a continuous-wave He–Ne laser at 632.8 nm. The negative nonlinear refractive index (n2) in the order of 10? 5 cm2/w for all samples was obtained. We believe that, this large nonlinearity is owing to Janossy effect and the difference in the nonlinear refractive index of our dyes can be described by the structures of dyes and the interactions between dyes and 1294-1b molecules. So as to understand the effect of dye structure on nonlinearity enhancement, the dichroic ratio of these dyes in 1294-1b was measured using polarized spectroscopy.  相似文献   

15.
In this work, highly oriented pure and Tin-doped Titanium dioxide (Sn-doped TiO2) with porous nature photoelectrodes were deposited on ITO glass plates using spray pyrolysis technique. The XRD pattern revealed the formation of anatase TiO2 with the maximum intensity of (101) plane while doping 6 at% of Sn. The morphological studies depicted the porous nature with the uniform arrangement of small-sized grains. The presence of tin confirmed with the EDX spectra. The size of particles of 13 nm was observed from High Resolution Transmission Electron Microscopy (HR-TEM) analysis. The average transmittance was about 85% for the doped photoelectrode and was observed for the photoelectrode deposited with 6 at% of tin, with decreased energy band gap. The PL study showed the emission peak at 391 nm. The maximum carrier concentration and Hall mobility was observed for the photoelectrode deposited with 6 at% of tin. With these studies, the DSSCs were prepared separately with the dye extracted from Hibiscus Rosasinesis and Hibiscus Surttasinesis and their efficiency was maximum for the DSSC prepared with 6 at% of tin.  相似文献   

16.
Three-photon pumped frequency-upconversion fluorescence and nonlinear transmission properties of tris-[4-(2-{4-[5-(4-tert-butyl-phenyl)-[1,3,4]oxadiazol-2-yl]-phenyl}-vinyl)-phenyl]-amine (TPAD3) are studied using a Ti:Sapphire oscillator–amplifier system associated with an optical-parametric amplifier, which could specifically provide ~80 fs duration and 1175–1300 nm laser pulses for three-photon excitation. The dye shows very efficient three-photon pumped frequency-upconversion fluorescence and three-photon absorption at wavelengths from 1175 nm to 1300 nm. In our study, the beam intensity distribution is also taken into account. For the first time we give the analytical solution to nonlinear transmission of a three-photon absorption process when the incident beam has a Gaussian transverse spatial profile.  相似文献   

17.
The two-photon absorption (TPA) characteristics of PMMA discs doped with three different dyes were studied using an fs-pulsed Ti-Sapphire laser as the pump source, and employing the open-aperture Z-scan technique. TPA cross-sections obtained for PMMA doped with the dyes PM597, DCM and rhodamine 6G–rhodamine B (co-doped) were found to be equal to 24.7, 33.3 and 32.3 GM, respectively (1 GM=10?50 cm4 s phot?1 mol?1). Furthermore, two-photon fluorescence was measured for the samples containing DCM and rhodamine 6G–rhodamine B (co-doped). Compared to the one-photon fluorescence spectrum, the peaks in the two-photon fluorescence spectrum were red shifted and the extent of red shift increased with increasing doping concentration. We have also observed that the red shift in the two-photon fluorescence peak of the samples in the solid form is much larger than that in the solution state. This phenomenon could be explained by a twisted intra-molecular charge transfer model.  相似文献   

18.
Yuh Ming Hsu  Chung Cheng Chang 《Optik》2012,123(18):1627-1631
In this study, the oscillation conditions for series photodetector frequency circuit system were proposed and verified experimentally. The effect of the capacitance Cp and oscillator phase θ on the oscillation ability of series photodetector frequency circuit system was investigated. It revealed that series photodetector frequency circuit system possessed excellent oscillation ability, but the oscillation ability decreased with increasing oscillator phase or decreasing capacitance Cp, even resulted in a cease-to oscillate zone. Moreover, this study elucidated the frequency response and optical detection of series photodetector frequency circuit system matched with PMMA for fluorescence dye concentration. In accordance with Hex fluorescence dye concentrations and frequency responses, the detection limit of fluorescence dye concentration 3.3 pmol/L can be measured by 100 MHz sensor system matched with PMMA. The results also showed that the frequency shift of 100 MHz sensor system matched with PMMA was linearly related to the logarithm of fluorescence dye concentration from 3.3 pmol/L to 33.3 μmol/L.  相似文献   

19.
The interaction of aconitine with bovine serum albumin (BSA) and effect of atropine sulphate and glycyrrhizic acid on binding constant, binding sites, and conformation were studied in an aqueous buffer solution (pH 7.40) by ultraviolet absorption and fluorescence spectroscopy. The study results show that aconitine quenched the endogenous fluorescence of BSA via a dynamic quenching procedure. Predominant intermolecular forces between aconitine and BSA were hydrophobic interactions, which stabilized the complex of aconitine–BSA. The distance between the donor and acceptor was 2.62 nm. The conformation of BSA was investigated by synchronous fluorescence techniques, indicating that the microenvironment around tryptophan (Trp) residues was changed. Furthermore, with the addition of atropine sulphate or glycyrrhizic acid, binding constant and the number of binding sites of aconitine to BSA were decreased, and the conformation had no change, which provide an important theoretical support for aconitine detoxification by atropine sulphate and glycyrrhizic acid.  相似文献   

20.
《Current Applied Physics》2010,10(3):749-756
We report the synthesis, electrochemical and photovoltaic properties of triphenylamine based novel organic sensitizer, comprising donor, electron-conducting and anchoring group. Different triphenylamines were synthesized as donor unit and connected to cyano-acidic acid acceptor over vinyl group. In this work, we studied on two novel dyes (TPA2, TPA3) by attaching methyl to m-position and diphenylamine to p-position of the basic triphenylamine structure, respectively. All derivatives absorb at visible region of solar spectrum in the range of 350–632 nm. By introducing strong electron injection groups to triphenylamine ring, band gap becomes narrower while EHOMOELUMO levels are tuned. All current voltage (IV) measurements were done under 100 mW/cm2 light intensity and AM 1.5 conditions. TPA3 chromophore with the lowest band gap shows the best cell performance with an efficiency (η) of 4.12%, a short-circuit photocurrent density (Isc) of 8.07 mA/cm2, an open-circuit voltage (Voc) of 714 mV and a fill factor (FF) of 0.72.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号