首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 609 毫秒
1.
牛志强  方炎 《物理学报》2007,56(3):1796-1801
利用柠檬酸法制备出了Mo-Fe-MgO,Mo-Co-MgO和W-Co-MgO催化剂,在小型流化床中,以Ar气为载气,在1123 K下催化裂解CH4来制备单壁碳纳米管(SWCNTs).利用透射电子显微镜和拉曼光谱方法研究了催化剂组分对SWCNTs制备的影响,并对SWCNTs的生长机理进行了探索,研究结果表明,柠檬酸法是一种制备负载型SWCNTs催化剂的有效方法,三种催化剂都能够得到质量较好的SWCNTs,在1123 K左右,SWCNTs在三种催化剂上的生长过程可能类似于“微液相模型”.催化剂的组分对SWCNTs的管径分布影响较小,不同催化剂所得到的SWCNTs在内部结构上存在一定的差异.催化剂中加入第二组分Mo和W能有效提高产物的碳产率. 关键词: 单壁碳纳米管 催化化学气相沉积法 生长机理 拉曼光谱  相似文献   

2.
本文采用流化床反应器,利用MgO作为催化剂载体,以Mo和Fe为催化剂。让Ar气流携带含水的乙醇蒸汽进入反应器,通过化学气相沉积(CCVD)法合成了单壁碳纳米管(SWCNTs)。利用拉曼光谱和透射电镜(TEM)对所合成的单壁碳纳米管质量进行检测。实验结果表明无水乙醇中加入7%的水反应温度在950℃时,制备的单壁碳纳米管的质量最好而且管径分布非常均匀。  相似文献   

3.
本文以Mo1-Fe10-MgO为催化剂, Ar为载气, CH4为碳源, 在不同的温度下制备SWCNTs。利用显微激光拉曼研究了不同的制备温度对生成SWCNTs的质量的影响, 得到制备SWCNTs的温度窗口, 给出最佳制备温度。  相似文献   

4.
欧阳雨  方炎 《物理学报》2005,54(2):578-581
利用透射电子显微镜和拉曼光谱方法研究了水对800℃下Ar气中催化分解CH4制备单壁碳纳米管(SWCNTs)的影响.结果表明,反应气中少量水(室温下反应气的湿度约5%)的引入提高了产物中SWCNTs的含量.初步分析认为,水在反应过程中起到了提纯作用,从而降低无定形碳生成率.此外,还发现水的引入缩小了产物中SWCNTs的管径分布. 关键词: 单壁碳纳米管 水 拉曼光谱  相似文献   

5.
以柠檬酸法制备的Fe MgO、Co MgO和Ni MgO为催化剂 ,CH4 为碳源气 ,H2 为还原气 ,在 873、973和 10 73K制备出碳纳米管 ,通过TEM和拉曼光谱表征 ,讨论了催化剂、制备温度、反应时间等因素对碳纳米管形貌、产率和内部结构的影响 .结果表明 :不同的催化剂在相同的温度下制备的碳纳米管的形态和内部结构有很大的差异 .其中Fe MgO催化剂制备的碳纳米管管径粗 ,且大小不均匀 ,而Ni MgO催化剂制备的碳纳米管管径较细、较均匀 .碳纳米管的产率随着裂解温度的变化而改变 .Fe MgO催化剂制备碳纳米管的产率随制备温度的升高而提高 ,而Ni MgO催化剂制备碳纳米管的产率随制备温度的升高而降低 .Fe MgO催化剂制备碳纳米管 ,在10 73K甚至更高的制备温度才能达到其最高产率 .Co MgO催化剂制备碳纳米管的产率在 973K左右产率较高 ,而用Ni MgO催化剂制备碳纳米管 ,则在 873K甚至更低的制备温度就能达到最高产率 .反应时间与碳纳米管的产率不成正比 ,有一最佳反应时间 ,如Ni MgO催化剂的最佳反应时间为 2h .  相似文献   

6.
用微米级LaNi5合金粉末为催化剂, 以乙炔为原料, 采用化学气相沉积(CVD)法合成了多壁碳纳米管. 在100~290 K温度下测量了41 μm≤d≤150 μm粒径催化剂制备的不同直径分布的碳纳米管的电子自旋共振(ESR)谱,研究了测量温度、微米级催化剂粒径及制备过程的氢气氛对生成的碳纳米管的ESR谱线型、g因子、线宽的影响. 发现碳纳米管的g因子随其直径的增大而增大,分别为2.040 0(催化剂粒径41 μm≤d≤50 μm, 碳纳米管的直径分布为10 nm到20 nm)和2.089 8(催化剂粒径100 μm≤d≤150 μm,碳纳米管的直径分布为70 nm到120 nm). 发现小管径纳米管的ESR谱图有一个峰, 而大管径纳米管的ESR谱图有两个峰A和B, 且随测量温度的升高, 峰B强度增大.  相似文献   

7.
用直流碳弧法在He气氛和Ar气氛(压强为10—80 kPa)下制备碳纳米管,在770℃下将阴极深积物氧化至原重量的1%,得到纯的碳纳米管,测量不同气氛及压强下制备的碳纳米管的室温电子自旋共振(ESR)谱,讨论了不同惰性气氛及压强对所制备碳纳米管的直径分布及ESR谱线型、g因子、线宽和相对自旋浓度的影响. 关键词:  相似文献   

8.
傅兴海  尹伊  张磊  叶辉 《物理学报》2009,58(7):5007-5012
采用直流磁控溅射并通过优化工艺参数,在(100)Si衬底上成功制备了高度(100)择优的MgO薄膜和MgO/TiN双层膜结构.对 (100)MgO择优取向温度影响机理做了详细讨论,并利用XRD,AFM,FESEM等手段研究了在(100)Si和(100)TiN/Si两种衬底上,不同工艺条件下MgO薄膜的表面和断面微观结构,表征了MgO薄膜的柱状生长结构和与TiN薄膜的良好外延关系.在对薄膜光学特性的研究中,利用Sellmeier模型获得了Si上MgO薄膜在可见光波段的折射率参数(550 nm处折射率为1.6 关键词: MgO薄膜 择优取向 直流溅射 折射率拟合  相似文献   

9.
朱亚波  鲍振  蔡存金  杨玉杰 《物理学报》2009,58(11):7833-7837
运用分子动力学方法具体模拟研究单个碳纳米管(CNTs)在加热过程中的结构变化.选择多组不同结构的单壁碳纳米管(SWCNTs)和双壁碳纳米管(DWCNTs)作为研究对象,加热温度从室温开始到4000 K,压强保持为1 atm.结果表明单壁碳管中手性型结构热稳定性最好,其次是扶手椅型和锯齿型,当手性角相同时,直径大的热稳定性更高;对于双壁碳管,研究表明当双壁中至少之一为手性结构时其热稳定好,而内外壁均为锯齿结构的稳定性最差,该结果进一步支持了有关单壁碳管的结论;还从理论上探索了描述结构热稳定性的方式,并在键层 关键词: 单壁碳纳米管 双壁碳纳米管 分子动力学方法 热稳定性能  相似文献   

10.
采用巨正则蒙特卡罗方法(GCMC)研究了单壁氮化硼纳米管(SWBNNTs)和单壁碳纳米管(SWCNTs)的物理吸附储氢性能,主要对比研究了纳米管的管径、温度和手性对二者物理吸附储氢量的影响. 研究结果表明:在低温下,SWBNNTs的物理吸附储氢性能优于相应的SWCNTs;但是随着温度的升高,二者的物理吸附储氢性能差别越来越小,在常温下,SWBNNTs不具备有比SWCNTs更强的物理吸附储氢性能,而是和相同条件下的SWCNTs相差不大,只是在高压下的物理吸附储氢量稍稍大于SWCNTs,并给出了合理的理论解释 关键词: 巨正则蒙特卡罗方法(GCMC) 单壁氮化硼纳米管(SWBNNTs) 单壁碳纳米管(SWCNTs) 储氢  相似文献   

11.
《Current Applied Physics》2018,18(4):417-423
We investigated synthesis and electrocatalytic performance of metal-free, nitrogen-doped carbon nano-onions (N-CNOs) for oxygen reduction reactions in alkaline electrolyte. N-CNOs were prepared by chemical oxidation of nanodiamond-derived carbon nano-onions (ox-CNOs), followed by thermal annealing with urea under the flow of argon gas. The chemical oxidation step was critical to successfully internalize nitrogen atoms into carbon network. Morphology, microstructure, and chemical states of carbon nano-onions (CNOs), ox-CNOs, and N-CNOs were characterized by transmission electron microscopy (TEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Electrocatalytic activity of pristine and modified CNOs was characterized by a series of electrochemical measurements. Electrochemical characterizations were done with thin film electrodes of CNOs mounted on a glassy carbon disk. Compared to CNOs and ox-CNOs, N-CNOs showed remarkably enhanced electron-transfer kinetics with the 4-electron transfer as a dominant reaction pathway. Overall, N-CNOs exhibited electrochemical characteristics comparable to commercial Pt/C catalysts.  相似文献   

12.
Single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) synthesized by a catalytic chemical vapor deposition method showed partially incorporated metal catalysts inside the graphene walls. In order to remove the metal catalysts, acid and thermal treatments were successively carried out. The methods for effective catalyst removal in SWCNTs and DWCNTs were examined by means of thermogravimetric analysis, electron microscopy, and electron paramagnetic resonance. The DWCNTs showed distinctly different metal catalyst removal behavior from that of SWCNTs due to the double-wall structure. The acid treatment is less efficient for catalyst removal from DWCNTs, while catalysts in SWCNTs are effectively removed by acid treatment. Additional thermal treatment is quite effective to remove metal catalysts from DWCNTs.  相似文献   

13.
纳米TiO_2-活性炭的制备及光催化脱汞初探   总被引:4,自引:0,他引:4  
采用溶胶凝胶法以活性炭(AC)为载体,制备纳米TiO_(2-)活性炭复合物(TiO_(2-)AC).采用X射线衍射仪(XRD),场发射扫描电镜结合X射线能谱分析仪(FSEM-EDX)对TiO_(2-)AC复合物进行表征。在波长为253.7 nm的紫外光照射下进行TiO_(2-)AC光催化氧化脱除单质汞试验。结果表明,复合物表面TiO_2纳米粒子尺寸可控制在30 nm左右;热处理温度的升高促进TiO_2晶粒的生长及相变,复合物中TiO_2锐钛矿相向金红石相转变的温度在500~700℃之间;负载锐钛矿型TiO_2的复合物较金红石型复合物显示出更强的光催化脱汞效果。TiO_(2-)AC能够达到预期的结合TiO_2光催化氧化性能与活性炭强吸附能力的效果,脱汞性能显著,具有广阔的应用前景。  相似文献   

14.
A hot filament chemical vapor deposition (HFCVD) method was used to prepare Fe-Cr thin film on Si substrate. The produced layers were used as catalysts for growing carbon nanotubes (CNTs) from liquid petroleum gas (LPG) at 825 °C by thermal CVD (TCVD) method. To characterize the obtained catalysts or CNTs, X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Raman spectroscopy were used. CNTs were grown on HFCVD derived Fe-Cr catalyst with the LPG as carbon source successfully. It was found that an annealing process on catalysts enhances the surface concentration of Cr atoms and reduces the sizes of catalyst particles. The grown CNTs on annealed sample were morphologically denser with smaller diameters compared to the as deposited one. In addition, the effect of filament temperature on CNTs was investigated. By increasing the filament temperature from 850 to 1050 °C the surface density and diameters of CNTs were improved.  相似文献   

15.
Carbon micro/nanofibers and nanotubes were deposited via chemical vapor deposition (CVD) using CH2I2 precursor and different metal catalysts (Pd, Ni, Fe, Co and Mn) on Si (1 0 0) substrates. A versatile and low-cost IR lamp technique is employed to induce the deposition process. With this method carbon features could be obtained already at temperatures much lower than with common techniques. Palladium metal was deposited by laser-assisted CVD from a liquid solution of the ammine complex and the 3d metals by thermal evaporation. Large-scale periodicity of nano-sized metal catalysts, and subsequently of carbon deposits was obtained by using monolayers of polystyrene microspheres as mask. The carbon structures were analyzed by SEM and micro-Raman spectroscopy.  相似文献   

16.
Position-selective growth of carbon nanotubes (CNTs) and vertically aligned CNTs (VACNTs) on patterned metal electrodes have been prepared by thermal chemical vapor deposition (TCVD) and DC plasma enhanced chemical vapor deposition (PECVD). We propose newly a position-controlling method of CNTs by controlling not only a position of Ni as catalysts but also the morphology of Mo as underlayers for the catalysts. The position-selective growth of CNTs was achieved at the edges of the patterned metal by TCVD. The morphologies of the Mo underlayer at the selected area were rough and porous. No CNTs grew on smooth Mo surfaces. The minimum width of selectively grown CNTs, ca. 2.6 μm, was approximately one-eightieth of the patterned metal, 200 μm. VACNTs were synthesized by a PECVD method, however, the VACNTs grew up all over the patterned metal. The Ni catalysts formed into fine particles on rough surfaces of the Mo underlayer. Then the selective growth was achieved by Ni fine particles formed only at the edges of the metal pattern. The results of PECVD suggest that the plasma promoted the Ni catalysts to become fine particles on smooth surfaces of Mo. Conclusively a position-controlling method of CNTs was demonstrated in the optimum conditions of the TCVD.  相似文献   

17.
In order to use carbon nanotube (CNT)-supported catalyst as fuel cell electrodes, Pt-Ni-Fe/CNT/carbon paper (CP) electrode was prepared using an ethylene glycol reduction method. CNTs were directly synthesized on Ni-impregnated carbon paper, plain carbon cloth, and Teflonized carbon cloth using chemical vapor deposition. FESEM and TEM images and thermogravimetric analysis indicated that in situ CNT on carbon paper (ICNT/CP) possesses more appropriate structural quality and stronger adhesion to the substrate than other substrates. The contact angle analysis demonstrated that the degree of ICNT/CP surface hydrophobicity encountered a 24% increase in comparison to CP and promoted to superhydrophobicity from hydrophobicity. The polarization curves and electrochemical impedance spectroscopy results of the loaded Pt-Ni-Fe on in situ and ex situ CNT/CP illustrated that the power density increased and charge transfer resistance reduced compared to commercial Pt/C loaded on CP. The results can be attributed to the outstanding properties of CNTs and high catalytic activity of triple catalysts causing alloying of Pt with Ni and Fe, which makes them a proper candidate to be used as cathode electrodes in proton exchange membrane fuel cells.  相似文献   

18.
Multi-walled carbon nanotubes (MWNT) were produced by chemical vapor deposition using yttria-stabilized zirconia/nickel (YSZ/Ni) catalysts. The catalysts were obtained by a liquid mixture technique that resulted in fine dispersed nanoparticles of NiO supported in the YSZ matrix. High quality MWNT having smooth walls, few defects, and low amounts of by-products such as amorphous carbon were obtained, even from catalysts with large Ni concentrations (>50 wt. %). By adjusting the experimental parameters, such as flux of the carbon precursor (ethylene) and Ni concentration, both the MWNT morphology and the process yield could be controlled. The resulting YSZ/Ni/MWNT composites can be interesting due to their mixed ionic-electronic transport properties, which could be useful in electrochemical applications. PACS 61.46.Fg; 81.15.Gh; 82.45.Jn  相似文献   

19.
Carbon nanotubes (CNTs) have attracted considerable attention as possible routes to device miniaturization due to their excellent mechanical, thermal, and electronic properties. These properties show great potential for devices such as field emission displays, transistors, and sensors. The growth of CNTs can be explained by interaction between small carbon patches and the metal catalyst. The metals such as nickel, cobalt, gold, iron, platinum, and palladium are used as the catalysts for the CNT growth. In this study, diamond-like carbon (DLC) was used for CNT growth as a nonmetallic catalyst layer. DLC films were deposited by a radio frequency (RF) plasma-enhanced chemical vapor deposition (RF-PECVD) method with a mixture of methane and hydrogen gases. CNTs were synthesized by a hot filament plasma-enhanced chemical vapor deposition (HF-PECVD) method with ammonia (NH3) as a pretreatment gas and acetylene (C2H2) as a carbon source gas. The grown CNTs and the pretreated DLC films were observed using field emission scanning electron microscopy (FE-SEM) measurement, and the structure of the grown CNTs was analyzed by high resolution transmission scanning electron microscopy (HR-TEM). Also, using energy dispersive spectroscopy (EDS) measurement, we confirmed that only the carbon component remained on the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号