首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
我国近海风电场建设大多采用桩基承台结构.总结了不规则波浪和水流共同作用下桩基承台结构的波流力物理模型实验结果,得到了群桩效应系数及其变化规律,讨论了作用于近水面承台底部的波浪拍击力;从理论上分析了规则波作用下承台对桩基波浪力的影响;建立了规则波与桩基承台相互作用的数值模型,揭示了波浪在承台的上浪与爬高及其水动力特征.鉴于桩基承台结构包含多个斜桩和较大尺度的承台,在波浪与水流作用下该结构物附近的流场结构十分复杂,有必要针对结构附近的流动结构以及自由表面大变形开展细致的实验和数值模拟研究,以进一步揭示作用于这类结构的波流力变化规律及其机理.  相似文献   

2.
李山  李晔 《应用数学和力学》2022,43(12):1359-1369
波高是波浪信息最基本的元素,对波高的精确测量无论是对波浪理论的研究还是数值方法的拓展,都起着指导和验证的作用。文中基于双目立体视觉原理自主搭建了波面光学测量系统,突破了传统测量设备如浪高仪等单点测量的局限性,并将波浪理论融入到数据后处理方法中,对常用的单纯依赖图像的光学测量方法进行了改进。通过在拖曳水池中对单向规则波瞬时波面的识别和重构,并将结果与浪高仪以及理论来波参数进行了对比验证,结果表明该测量系统在大范围波面的测量中误差在1%左右,最后对其在非规则的来波下进行了初步尝试。  相似文献   

3.
考虑风-浪耦合场中风和波浪特征参数的相关性,建立了基于有限元法与边界元法联合分析的特大型桥梁风-浪耦合作用运动方程.其中,作用在大型深水基础上的波浪力采用势流理论和边界元法进行计算,并建立有限单元与边界元单元组的映射关系,将边界单元组上的波浪力映射到结构有限单元上;作用在桥梁上的气动力通过有限元法进行计算,包括由脉动风激发的非定常抖振力和由气弹相互作用产生的自激力.在此基础上,基于随机振动分析的高效算法——虚拟激励法,建立了计算桥梁风-浪耦合作用响应的分析方法.最后,针对某跨海超大跨桥梁方案进行研究,结果表明:与风致响应相比,风-浪耦合作用下桥梁深水基础内力显著增大,其中波浪激发的侧向剪力占主导地位,波浪激发的侧向弯矩在海床附近与风致响应基本相当,但在海床以下更大;斜风-波浪耦合作用下的主梁内力响应和深水基础内力响应比正交风-波浪耦合作用下的结果更大.因此,在跨海桥梁设计中,必须考虑风-浪耦合作用效应.  相似文献   

4.
张力腿平台有限振幅运动的方程和数值解   总被引:1,自引:0,他引:1  
论证了张力腿平台(TLP)在波浪作用下发生有限振幅运动时,所受惯性力、粘性力、浮力等载荷不仅与波浪场有关,还与瞬时响应有关,是响应的非线性函数;张力腿拉力也是各自由度位移的非线性函数.所以分析TLP受力时必须考虑平台的瞬时加速度、速度和位移,在瞬时位置建立运动方程.据此推导出TLP发生有限振幅运动时的外力计算公式,建立了TLP 6自由度有限振幅运动非线性控制方程.其中考虑了由6自由度有限位移引起的多种非线性因素,如各自由度之间的耦合、瞬时湿表面、瞬时位置等;还包括自由表面效应、粘性力等因素引起的非线性.用数值方法求解所得到的非线性运动方程.对典型平台ISSC TLP进行了数值分析,求得该平台在规则波作用下的6自由度运动响应.用退化到线性范围的解与已有解进行了对比,吻合良好.数值结果表明,综合考虑非线性因素后响应有明显改变.  相似文献   

5.
考虑表面张力的作用,研究了不可压缩、无粘性流体流过变化壁面时的共振流动,分析了不同的底部壁面变化对非线性表面波的影响.在导出非线性表面波遵循的fKdV方程后,利用拟谱方法进行数值模拟,用Matlab软件绘制瀑布图,由此得出结论:上凸底部上的波可以看成是向前凸台阶和向后凸台阶分别向前后散射发展的结果,二者不发生相互作用;下凹壁面的波形是向前凹台阶和向后凹台阶相互作用的结果;某些组合式底部的波形是上凸和下凹相互作用的结果.  相似文献   

6.
王尚毅 《中国科学A辑》1984,27(12):1151-1160
本文基于理论和试验研究,导出在平衡条件下二维余波中悬移质含沙量的垂向分布公式。研究结果表明,在实践中可能有以下三种情况:(1)含沙量在水面附近较低,中部较高,近底部更高;(2)含沙量在水面附近较高,中部较低,近底部最低;(3)含沙量在水面附近较高,中部较低,近底部又高。 文中最后提出并讨论了泥沙在波浪作用中的一种“冲泻质(Wash Load)”新概念。  相似文献   

7.
针对二维波浪上方飞行的非定常二维地效翼进行了非线性分析.通过对二维奇点在规则波上方运动的Green函数的推导,利用离散涡方法解决了二维波浪上方飞行的非定常地效翼的升力问题.针对不同的几何参数和波浪参数对升力系数进行了研究.通过与定常情况的对比,验证了方法的有效性.  相似文献   

8.
缓变深度分层流体中的准周期波和准孤立波   总被引:1,自引:1,他引:0  
本文讨论具缓变深度二流体系统中的非线性波,该系统由一不规则底部与一水平固壁间的两层常密度无粘流体所组成.文中用约化摄动法导出了所考虑模型的变系数Korteweg-de Vries方程,并用多重尺度法求出了该方程的近似解,发现底部固壁的不规则变化将产生所谓准周期波和准孤立波.它们的周期、波速和波形将发生缓慢变化,文中给出了准周期波的周期随深度的变化关系式以及准孤立波波幅、波速随深度的变化关系式,底部水平情形和单层流体情形可看成是本文的特例.  相似文献   

9.
针对信天翁近海面的飞行条件,研究信天翁能在大风浪中高效飞行的力学机理.将信天翁简化为二维机翼,采用势流理论的面元方法,重点研究了波浪的有益干扰.给出了信天翁在匀速固定高度飞行和自由飞行两种状态下的波浪扰动力.计算结果表明:信天翁的飞行效率不仅取决于飞行的高度和速度,而且取决于浪高和波长;在大风浪下信天翁可以从波浪有益干扰中获得推力来抵消部分飞行阻力,提高飞行效能.  相似文献   

10.
具有积分型非线性schrodinger方程是在研究非线性Langmuir波时考虑到离子惯性作用而导出的.本文讨论了二维空间中具有积分型非线性schrodinger方程组的初值问题,用积分估计方法证明了整体解的存在唯一性.  相似文献   

11.
Hydraulic jumps are usually used to dissipate energy in hydraulic engineering. In this paper, the turbulent submerged hydraulic jumps are simulated by solving the unsteady Reynolds averaged Navier–Stokes equations along with the continuity equation and the standard k? equations for turbulence modeling. The Lagrangian moving grid method is employed for the simulation of the free surface. In the developed model, kinematic free-surface boundary condition is solved simultaneously with the momentum and continuity equations, so that the water elevation can be obtained along with velocity and pressure fields as part of the solution. Computational results are presented for Froude numbers ranging from 3.2 to 8.2 and submergence factors ranging from 0.24 to 0.85. Comparisons with experimental measurements show that numerical model can simulate the velocity field, variation of free surface, maximum velocity, Reynolds shear and normal stresses at various stations with reasonable accuracy.  相似文献   

12.
研究奇异边界法模拟水波在含水下障碍物水域的传播过程.奇异边界法是一种最近提出的新型边界配点方法,具有无网格和无数值积分、数学简单、编程容易等优点.首先研究了奇异边界法分析典型水波算例的精度及效率,并与边界元法的计算结果进行比较,然后通过数值模拟讨论分析了水下障碍物位置、尺寸及形状等因素对水波传播的影响.发现奇异边界法的计算精度较高,且与边界元法的计算结果吻合较好;数值结果显示水下障碍物的不同高宽比对水波的传播影响明显:障碍物无量纲高度越大对水波的屏障作用越明显;障碍物无量纲宽度增加对水波的屏障作用先增强后变弱.在高宽比一定时,斜率变化对水波的屏障作用不明显;含吸收边界水下障碍物可以得到较低的传递系数和较高的反射系数, 对水波的屏障作用更为明显.  相似文献   

13.
The adiabatic evolution of perturbed solitary wave solutions to an extended Sasa‐Satsuma (or vector‐valued modified Korteweg–de Vries) model governing nonlinear internal gravity propagation in a continuously stratified fluid is considered. The transport equations describing the evolution of the solitary wave parameters are determined by a direct multiple‐scale asymptotic expansion and independently by phase‐averaged conservation relations for an arbitrary perturbation. As an example, the adiabatic evolution associated with a dissipative perturbation is explicitly determined. Unlike the case with the dissipatively perturbed modified Korteweg–de Vries equation, the adiabatic asymptotic expansion for the Sasa‐Satsuma model considered here is not exponentially nonuniform and no shelf region emerges in the lee‐side of the propagating solitary wave.  相似文献   

14.
A fully three-dimensional unsteady flow model is developed to simulate free surface flow over a submerged structure. A new sigma coordinate is used to map the physical domain containing the wavy free surface and uneven bottom to a rectangular prism, and to keep the size of the submerged block unchanged in the sigma coordinate system. The numerical difficulty encountered in the conventional sigma coordinate system in which the block changes dynamically due to the time varying free surface is thus eliminated. A split operator scheme is used in the numerical solution so that different numerical schemes can be purposely chosen to deal with the distinctive mathematical and physical characteristics of the phenomena at different steps. k– model is used in the parameterization of turbulence due to its efficiency and reasonable performance. The model is applied to simulate the propagation of a solitary wave with good results. It is subsequently used to simulate a free surface flow against a submerged cube with one face perpendicular (or 45° inclined) to the flow. The numerical results compare favorably with the experimental measurements. In particular, no excessive turbulent kinetic energy is accumulated at the impingement regions.  相似文献   

15.
Many models of shallow water waves, such as the famous Camassa–Holm equation, admit peaked solitary waves. However, it is an open question whether or not the widely accepted peaked solitary waves can be derived from the fully nonlinear wave equations. In this paper, a unified wave model (UWM) based on the symmetry and the fully nonlinear wave equations is put forward for progressive waves with permanent form in finite water depth. Different from traditional wave models, the flows described by the UWM are not necessarily irrotational at crest, so that it is more general. The unified wave model admits not only the traditional progressive waves with smooth crest, but also a new kind of solitary waves with peaked crest that include the famous peaked solitary waves given by the Camassa–Holm equation. Besides, it is proved that Kelvin’s theorem still holds everywhere for the newly found peaked solitary waves. Thus, the UWM unifies, for the first time, both of the traditional smooth waves and the peaked solitary waves. In other words, the peaked solitary waves are consistent with the traditional smooth ones. So, in the frame of inviscid fluid, the peaked solitary waves are as acceptable and reasonable as the traditional smooth ones. It is found that the peaked solitary waves have some unusual and unique characteristics. First of all, they have a peaked crest with a discontinuous vertical velocity at crest. Especially, unlike the traditional smooth waves that are dispersive with wave height, the phase speed of the peaked solitary waves has nothing to do with wave height, but depends (for a fixed wave height) on its decay length, i.e., the actual wavelength: in fact, the peaked solitary waves are dispersive with the actual wavelength when wave height is fixed. In addition, unlike traditional smooth waves whose kinetic energy decays exponentially from free surface to bottom, the kinetic energy of the peaked solitary waves either increases or almost keeps the same. All of these unusual properties show the novelty of the peaked solitary waves, although it is still an open question whether or not they are reasonable in physics if the viscosity of fluid and surface tension are considered.  相似文献   

16.
Wave collision and its interaction characteristics is one of the important challenges in coastal engineering. This article concerns the collision of solitary waves over a horizontal bottom considering unsteady, incompressible viscous flow with free surface. The method solves the two dimensional Naiver–Stokes equations for conservation of momentum, continuity equation, and full nonlinear kinematic free-surface equation for Newtonian fluids, as the governing equations in a vertical plan. A mapping was developed to trace the deformed free surface encountered during wave propagation, transforms and interaction by transferring the governing equations from the physical domain to a computational domain. Also a numerical scheme is developed using finite element modeling technique in order to predict the solitary wave collision. Consequently results compared with other researches and show the inelastic behavior of solitary wave collision.  相似文献   

17.
We consider the Isobe-Kakinuma model for two-dimensional water waves in the case of a flat bottom. The Isobe-Kakinuma model is a system of Euler-Lagrange equations for a Lagrangian approximating Luke's Lagrangian for water waves. We show theoretically the existence of a family of small amplitude solitary wave solutions to the Isobe-Kakinuma model in the long wave regime. Numerical analysis for large amplitude solitary wave solutions is also provided and suggests the existence of a solitary wave of extreme form with a sharp crest.  相似文献   

18.
This article deals with the envelope solitary waves and periodic waves in the AB equations that serve as model equations describing marginally unstable baroclinic wave packets in geophysical fluids and also ultra‐short pulses in nonlinear optics. An envelope solitary wave has a width proportional to its velocity and inversely proportional to its amplitude. The velocity of the envelope solitary wave is partially dependent on its amplitude in the sense that the amplitude determines the upper or lower limit of the velocity. When two envelope solitary waves collide, they survive the collision and retain their identities except for a shift in the positions of both the envelopes and the carrier waves. The periodic wave solutions in sine wave form may be stable or unstable depending upon the wave parameters. When the sine wave is destabilized by small perturbations, its long‐time evolution shows a Fermi–Pasta–Ulam‐type oscillation.  相似文献   

19.
Spectral wave models have experienced constant development and vast improvements over the past decades. They are constantly being extended and refined in order to cover the complex wave transformation processes that take place in the coastal zone. Nevertheless, wave transmission due to overtopping has not been treated similarly yet. In this paper, a methodology to include wave generation due to overtopping in spectral wave models is presented. Incorporation of overtopping aims at better simulating the wave disturbance in the lee side of a system of offshore breakwaters and the induced hydrodynamic processes. So far, the waves generated due to wave overtopping were being neglected. The methodology consists of executing sequential simulations at small time step intervals and whenever wave overtopping occurs in a breakwater, waves are generated and transmitted in the lee side of the structure. This is achieved by modifying the boundary condition at the lee of a coastal structure to account for wave generation due to overtopping. Additionally, the transmitted spectrum source function was modified, to capture the observed transfer of energy in the higher frequencies of the spectrum due to the aforementioned overtopping process. The above methodology was implemented in the open source wave model TOMAWAC and verification with experimental measurements was carried out yielding satisfactory results. Inclusion of wave transmission due to overtopping in spectral wave models is considered to be a valuable asset, especially for the simulation of inshore hydrodynamic processes.  相似文献   

20.
Strong earthquake induced huge tsunami has occurred for three times in Pacific ocean in recent ten years; for example, the tsunami triggered by the Sumatra earthquake in 2004, Chile earthquake in 2010 and Tohoku earthquake (Japan) in 2011. Tsunami carrying huge energy always would bring high risks to the population living near to coastline. Breakwater is widely used to dissipate the wave energy, and protect coastline and ports. However, they are vulnerable when being attacked by tsunami wave. At present, the interaction mechanism between tsunami, breakwater and its seabed foundation is not fully understood. In this study, the dynamics and stability of a breakwater under the attacking of tsunami wave is investigated by adopting an integrated model PORO-WSSI 2D, in which the VARANS equation for wave motion, and the Biot’s dynamic equation for soil are used. Based on the numerical results, it is found that offshore breakwater interacts intensively with tsunami wave when it overtopping and overflowing over a breakwater. The impact force on the lateral side of breakwater applied by tsunami wave is huge. The shear failure is likely to occur in the seabed foundation of breakwater. The liquefaction is unlikely to occur due to the fact that there is basically no upward seepage force in seabed foundation in the process of tsunami wave passing through the breakwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号