首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pure spin transport in an entire metallic single-wall carbon-nanotube (SWCN) interacting quantum dot (QD) system is investigated by using non-equilibrium Green's function (NEGF) technique. The novel spin current performance introduced by one constant and one rotating magnetic fields shows the unique four-fold degenerate electron shell structure which exists the SWCN QD sensitively. Spin transport properties can be designed by tuning the orbital and Zeeman configuration in the central resonant region, which are greatly influenced by the Coulomb interaction and the magnetic fields.  相似文献   

2.
We have investigated the mesoscopic transport through the system with a quantum dot (QD) side-coupled to a toroidal carbon nanotube (TCN) in the presence of spin-flip effect. The coupled QD contributes to the mesoscopic transport significantly through adjusting the gate voltage and Zeeman field applied to the QD. The compound TCN-QD microstructure is related to the separate subsystems, the applied external magnetic fields, as well as the combination of subsystems. The spin current component Izs is independent on time, while the spin current components Ixs and Iys evolve with time sinusoidally. The rotating magnetic field induces novel levels due to the spin splitting and photon absorption procedures. The suppression and enhancement of resonant peaks, and semiconductor-metal phase transition are observed by studying the differential conductance through tuning the source-drain bias and photon energy. The magnetic flux induces Aharonov-Bohm oscillation, and it controls the tunnelling behavior due to adjusting the flux. The Fano type of multi-resonant behaviors are displayed in the conductance structures by adjusting the gate voltage Vg and the Zeeman field applied to the QD.  相似文献   

3.
We investigate mesoscopic spin transport through a quantum dot (QD) responded by a rotating and an oscillating magnetic fields. The rotating magnetic field rotates with the angular frequency 0 around the z-axis with the tilt angle , while the time-oscillating magnetic field is located in the z-axis with the angular frequency . The spin flip is caused by the rotating magnetic field, and it is the major source of spin current. The Zeeman effect is contributed by the two field components, and it is important as the magnetic fields are strong. The oscillating magnetic field takes significant role due to the spin-photon pumping effect, and the spin current can be generated by it even as 00 for the tilt angle 0. The peak and valley structure appears with respect to the frequency of oscillating field. The generation of spin current is companying with charge current. Spin current displays quite different appearance between the cases in the absence of source-drain bias (eV=0) and in the presence of source-drain bias (eV0). The symmetric spin current disappears to form asymmetric spin current with a negative valley and a positive plateau. The charge current is mainly determined by the source-drain bias, photon absorption, and spin-flip effect. This system can be employed as an ac charge-spin current generator, or ac charge-spin field effect transistor.  相似文献   

4.
He Gao 《Physics letters. A》2008,372(35):5695-5700
We have investigated the mesoscopic transport properties of a quantum dot embedded Aharonov-Bohm (AB) interferometer applied with a rotating magnetic field. The spin-flip effect is induced by the rotating magnetic field, and the tunneling current is sensitive to the spin-flip effect. The spin-flipped electrons tunneling from the direct channel and the resonant channel interfere with each other to form spin-polarized tunneling current components. The non-resonant tunneling (direct transmission) strength and the AB phase φ play important roles. When the non-resonant tunneling (background transmission) exists, the spin and charge currents form asymmetric peaks and valleys, which exhibit Fano-type line shapes by varying the source-drain bias voltage, or gate voltage. The AB oscillations of the spin and charge currents exhibit distinct dependence on the magnetic flux and direct tunneling strength.  相似文献   

5.
We investigate the spin-flip effect on electronic transport in a nanostructure composed of two nonmagnetic (NM) leads separated by a periodic spacer. The spacer is composed of one-dimensional heterostructure formed by a sequence of magnetic (A) and nonmagnetic (B) sites periodically juxtaposed (as in a typical periodic quantum dot (QD)). The calculations are based on the tight-binding model and transfer matrix method, which compute the current–voltage characteristic within the Landauer–Büttiker formalism. Our main goal is to assess the contribution of the spin-flip scattering to the transport properties of such systems. The spin-dependent transport behavior can be controlled via a gate magnetic field and an applied voltage in the ballistic regime. Our results show that the conductance strongly depends on the configurations of the magnetic QD. The application of the predicted results may be useful in designing spin-valve devices, such as spin-polarized molecular transistors.  相似文献   

6.
Qiao Chen 《Physics letters. A》2008,372(15):2714-2719
We have investigated the spectral density of shot noise of the system with a quantum dot (QD) coupled to two single-wall carbon nanotube terminals, where a rotating magnetic field is applied to the QD. The carbon nanotube (CN) terminals act as quantum wires which open quantum channels for electrons to transport through. The shot noise and differential shot noise exhibit novel behaviors originated from the quantum nature of CNs. The shot noise is sensitively dependent on the rotating magnetic field, and the differential shot noise exhibits asymmetric behavior versus source-drain bias and gate voltage. The Fano factor of the system exhibits the deviation of shot noise from the Schottky formula. The super-Poissonian and sub-Poissonian shot noise can be achieved in different regime of source-drain bias.  相似文献   

7.
Mesoscopic transport through an ultrasmall quantum dot (QD) coupled to two single-wall carbon nanotube (SWCN) leads under microwave fields (MWFs) is investigated by employing the nonequilibrium Greens function (NGF) technique. The charging energy and junction capacitances influence the output characteristics sensitively. The MWFs applied on the leads and gate induce novel photon-assisted tunnelling, strongly associated with the density of states (DOS) of the SWCN leads. The SWCN leads act as quantum wires, and the compound effect induces nonlinear current behavior and resonant tunnelling in a larger region of energy scale. Negative differential conductance (NDC) is clearly observed, as the source-drain junction capacitances C L , and C R are large enough. The multi-resonant NDC oscillation appears due to the charging and photon-electron pumping effects associated with the contribution of multi-channel quantum wires.Received: 5 July 2004, Published online: 14 December 2004PACS: 73.40.-c Electronic transport in interface structures - 73.63.Fg Nanotubes - 73.61.Wp Fullerenes and related materials - 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals  相似文献   

8.
The resonant behaviors of spin-dependent linear AR conductance, the spin-dependent AR current, the electron occupation number and spin accumulation in the QD are theoretically investigated in the FM/QD/SC system with intradot spin-flip scattering. The novel resonant behaviors of spin-dependent AR conductance versus Fermi energy are revealed, which are rather different from the AR conductance versus the dot's energy level case [Cao et al., Phys. Rev. B 70 (2004) 235341]. It is proved that the split of the resonant peak can be induced by the competition between the coupling strengths to the FM and SC leads, the intradot spin-flip scattering, and the gate voltage. The number, the widths, and the distance of the peaks could be controlled by tuning the relevant parameters. The resonance of AR current can take place only when the energy level of QD lines up with the right lead chemical potential and blows the left lead chemical potential. The magnitude of the resonant AR current depends on the number of resonant levels involved in the Andreev tunneling process. It is also proved that the spin-flip scattering can suppress the spin accumulation effectively, and induce the spin polarization of AR conductance and AR current simultaneously. The results make us understand better the fundamental in this system, and are useful for the design of spintronic devices.  相似文献   

9.
李天信  翁钱春  鹿建  夏辉  安正华  陈张海  陈平平  陆卫 《物理学报》2018,67(22):227301-227301
半导体量子点是研究光子与电子态相互作用的优选固态体系,并在光子探测和发射两个方向上展现出独特的技术机遇.其中基于量子点的共振隧穿结构被认为在单光子探测方面综合性能最佳,但受到光子数识别、工作温度两个关键性能的制约.利用腔模激子态外场耦合效应,有望获得圆偏振态可控的高频单光子发射.本文介绍作者提出的量子点耦合共振隧穿(QD-cRTD)的光子探测机理,利用量子点量子阱复合电子态的隧穿放大,将QD-cRTD光子探测的工作温度由液氦提高至液氮条件,光电响应的增益达到107以上,并具备双光子识别能力;同时,由量子点能级的直接吸收,原型器件获得了近红外的光子响应.在量子点光子发射机理的研究方面,作者实现了量子点激子跃迁和微腔腔模共振耦合的磁场调控,在Purcell效应的作用下增强激子自旋态的自发辐射速率,从而增强量子点中左旋或右旋圆偏振光的发射强度,圆偏度达到90%以上,形成一种光子自旋可控发射的新途径.  相似文献   

10.
迟锋  刘黎明  孙连亮 《中国物理 B》2017,26(3):37304-037304
Spin-polarized current generated by thermal bias across a system composed of a quantum dot(QD) connected to metallic leads is studied in the presence of magnetic and photon fields. The current of a certain spin orientation vanishes when the dot level is aligned to the lead's chemical potential, resulting in a 100% spin-polarized current. The spin-resolved current also changes its sign at the two sides of the zero points. By tuning the system's parameters, spin-up and spin-down currents with equal strength may flow in opposite directions, which induces a pure spin current without the accompany of charge current. With the help of the thermal bias, both the strength and the direction of the spin-polarized current can be manipulated by tuning either the frequency or the intensity of the photon field, which is beyond the reach of the usual electric bias voltage.  相似文献   

11.
彭菊  郁华玲  左芬 《中国物理 B》2010,19(12):127402-127402
We theoretically studied the nonlocal Andreev reflection with Rashba spin-orbital interaction in a triple-quantumdot(QD) ring,which is introduced as Rashba spin-orbital interaction to act locally on one component quantum dot.It is found that the electronic current and spin current are sensitive to the systematic parameters.The interdot spin-flip term does not play a leading role in causing electronic and spin currents.Otherwise the spin precessing term leads to shift of the peaks of the the spin-up and spin-down electronic currents in different directions and results in the spin current.Moreover,the spin-orbital interaction suppresses the nonlocal Andreev reflection,so we cannot obtain the pure spin current.  相似文献   

12.
Effects of a longitudinal magnetic field on optical spin injection and detection in InAs/GaAs quantum dot (QD) structures are investigated by optical orientation spectroscopy. An increase in the optical and spin polarization of the QDs is observed with increasing magnetic field in the range 0-2?T, and is attributed to suppression of exciton spin depolarization within the QDs that is promoted by the hyperfine interaction and anisotropic electron-hole exchange interaction. This leads to a corresponding enhancement in spin detection efficiency of the QDs by a factor of up to 2.5. At higher magnetic fields, when these spin depolarization processes are quenched, the electron spin polarization in anisotropic QD structures (such as double QDs that are preferably aligned along a specific crystallographic axis) still exhibits a rather strong field dependence under non-resonant excitation. In contrast, such a field dependence is practically absent in more 'isotropic' QD structures (e.g.?single QDs). We attribute the observed effect to stronger electron spin relaxation in the spin injectors (i.e.?wetting layer and GaAs barriers) of the lower-symmetry QD structures, which also explains the lower spin injection efficiency observed in these structures.  相似文献   

13.
We theoretically study the spin pump effects of the rotating magnetic field on the spin current through two coupled quantum dots. Owing to the interdot coupling, two molecular states with different bands can be formed, resulting asymmetric spin current peaks. The possibility of manipulating the spin current is explored by tuning the strength, the frequency, and the direction of the rotating magnetic field. The number and location of the spin current peaks can be controlled by making use of various tunings. Furthermore, the normal 2π period of the spin current with respect to the magnetic flux can be destroyed by the interdot coupling.  相似文献   

14.
We theoretically study the thermoelectric transport properties in a quantum dot system with two ferromagnetic leads, the spin-flip scattering and the external magnetic field. The results show that the spin polarization of the leads strongly influences thermoelectric coefficients of the device. For the parallel configuration the peak of figure of merit increases with the increase of polarization strength and non-collinear configuration trends to destroy the improvement of figure of merit induced by lead polarization. While the modulation of the spin-flip scattering on the figure of merit is effective only in the absence of external magnetic field or small magnetic field. In terms of improving the thermoelectric efficiency, the external magnetic field plays a more important role than spin-flip scattering. The thermoelectric efficiency can be significantly enhanced by the magnetic field for a given spin-flip scattering strength.  相似文献   

15.
The spin-dependent transport through a diluted magnetic semiconductor quantum dot (QD) which is coupled via magnetic tunnel junctions to two ferromagnetic leads is studied theoretically. A noncollinear system is considered, where the QD is magnetized at an arbitrary angle with respect to the leads’ magnetization. The tunneling current is calculated in the coherent regime via the Keldysh nonequilibrium Green’s function (NEGF) formalism, incorporating the electron–electron interaction in the QD. We provide the first analytical solution for the Green’s function of the noncollinear DMS quantum dot system, solved via the equation of motion method under Hartree–Fock approximation. The transport characteristics (charge and spin currents, and tunnel magnetoresistance (TMR)) are evaluated for different voltage regimes. The interplay between spin-dependent tunneling and single-charge effects results in three distinct voltage regimes in the spin and charge current characteristics. The voltage range in which the QD is singly occupied corresponds to the maximum spin current and greatest sensitivity of the spin current to the QD magnetization orientation. The QD device also shows transport features suitable for sensor applications, i.e., a large charge current coupled with a high TMR ratio.  相似文献   

16.
An effective spin relaxation mechanism that leads to electron spin decoherence in a quantum dot is proposed. In contrast with the common calculations of spin-flip transitions between the Kramers doublets, we take into account a process of phonon-mediated fluctuation in the electron spin preces-sion and subsequent spin phase diffusion. Specifically, we consider modulations in the longitudinal g factor and hyperfine interaction induced by the phonon-assisted transitions between the lowest electronic states. Prominent differences in the temperature and magnetic field dependence between the proposed mechanism and the spin-flip transitions are expected to facilitate its experimental verification. Numerical estimation demonstrates highly efficient spin relaxation in typical semiconductor quantum dots.  相似文献   

17.
We present a theoretical study of the spin-dependent conductance spectra in a FM/semiconductor quantum-dot (QD)/FM system. Both the Rashba spin-orbit (SO) coupling in the QD and spin-flip scattering caused by magnetic barrier impurities are taken into account. It is found that in the single-level QD system with parallel magnetic moments in the two FM leads, due to the interference between different tunneling paths through the spin-degenerate level, a dip or a narrow resonant peak can appear in the conductance spectra, which depends on the property of the spin-flip scattering. When the magnetizations of the two FM leads are noncollinear, the resonant peak can be transformed into a dip. The Rashba SO coupling manifests itself by a Rashba phase factor, which changes the phase information of every tunneling path and can greatly modulate the conductance. When the QD has multiple levels, the Rashba interlevel spin-flip effect appears, which changes the topological property of the structure. Its interplay with the Rashba phase can directly tune the coupling strengths between dot and leads, and can result in switching from resonance into antiresonance in the conductance spectra.  相似文献   

18.
Nonequilibrium Green's function is uscd to study spin-polarized electron tunneling through a quantum dot connected to two ferromagnetic electrodes with different orientations via two insulating barriers (FM/I/QD/I/FA.f). Intra-level Coulomb interaction in the dot is considered. General formula of tunneling current which can be used for arbitrary angle between the two electrodes' magnetizations is derived for both the weak and strong intra-dot interactions.We find that the transport current can be divided into two parts: the current with the spin-flip and the current without the spin-flip, which critically depend on the linewidth function near the Fermi level of the ferromagnetic electrodes. If a magnetic field is applied in the quantum dot, different behaviors will be found for weak and strong interactions.  相似文献   

19.
We present a spin current generator based on a T-shaped double quantum dot (TDQD) molecule connected with two leads, and the coherent spin-flip effect is taken into account within the TDQD. The spin current from the right output terminal is obtained, more importantly, the properties of the spin current are investigated in detail, these results offer us a way to manipulate the spin current with the system parameters.  相似文献   

20.
We theoretically study the spin-polarized transport through double barrier magnetic tunnel junction (DBMTJ) consisting of the quantum dot sandwiched by two ferromagnetic (FM) leads. The tunneling current through the DBMTJ is evaluated based on the Keldysh nonequilibrium Green’s function approach. The self-energy and Green’s function of the dot are analytically obtained via the equation of motion method, by systematically incorporating two spin-flip phenomena, namely, intra-dot spin-flip, and spin-flip coupling between the lead and the central dot region. The effects of both spin-flip processes on the spectral functions, tunneling current and tunnel magnetoresistance (TMR) are analyzed. The spin-flip effects result in spin mixing, thus contributing to the spectral function of the off-diagonal Green’s function components ( Gs[`(s)] r )\left( {G_{\sigma \bar \sigma }^r } \right). Interestingly, the spin-flip coupling between the lead and dot enhances both the tunneling current and the TMR for applied bias above the threshold voltage V th . On the other hand, the intra-dot spin-flip results in an additional step in the I-V characteristics near V th . Additionally, it suppresses the tunneling current but enhances the TMR. The opposing effects of the two types of spin-flip on the tunneling current means that one spin-flip mechanism can be engineered to counteract the other, so as to maintain the tunneling current without reducing the TMR. Their additive effect on the TMR enables the DBMTJ to attain a large tunneling current and high TMR for above threshold bias values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号