首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the thermal heterogeneity of HPLC columns on retention data was investigated. The retention factor of the retained compound phenol was measured at 24 increasing values of the flow rate, from 0.025 to 4.9 mL/min, on six different packing materials prepared with the same batch of silica particles (5 microm diameter, 90 A pore size). One column was packed with the neat silica particles, another with the silica endcapped with trimethylchlorosilane (TMS)(C(1), 3.92 micromol/m(2)), and the other four with silica first derivatized with octadecyl-dimethyl-chlorosilane (C(18), 0.42, 1.01, 2.03, and 3.15 micromol/m(2)), and second endcapped with TMS. Four different sources of heat contributing to raise the column temperature were considered: (1) the heat supplied by the hot high-pressure pump chamber to the solvent; (2) the adiabatic (dS=0) compression of the solvent in the high-pressure pump; (3) the isenthalpic (dH=0) decompression of the solvent during its migration along the porous chromatographic bed; and (4) the heat released by the friction of the solvent percolating through the column bed. The main contributions appear to be the heat supplied to the solvent by the HP pump and the friction heat. The average column temperature (ACT) was indirectly derived from the measurements of the first moment, mu(1), of phenol peak, of the column pressure drop, DeltaP, and of the retention factors of the phenol peak apices as a function of the flow rate applied. If the column is placed in a still-air bath at 298 K (and its temperature is not externally controlled), a longitudinal temperature gradient is established along the column and the average column temperature is about 6 K higher when this column is operated at 4.9 mL/min than when the flow rate is only 0.025 mL/min. If the column is placed in a heated air bath (temperature controlled at 316 or 338 K), the ACT changes by less than 3 K over the whole flow rate range applied.  相似文献   

2.
The permeabilities of six columns packed with different packing materials (neat silica, C(1) endcapped silica at 3.92 micro mol/m(2), C(18) bonded and endcapped silica with 0.42, 1.01, 2.03, and 3.15 micro mol/m(2) of C(18) bonded chains) were measured. All these materials derive from the same batch of spherical particles, 5 micro m in diameter. The columns have the same tube inner diameter (phi=0.460+/-0.003 cm) and length (L=15.000+/-0.003 cm). The experimental conditions were the same, flow-rate (F(v)=1.000+/-0.003 mL/min) and temperature (295 K). Nevertheless, it was found that the column permeability decreases significantly, by about 25%, from the neat silica column to the one packed with the highest density of C(18)-bonded silica (3.15 micro mol/m(2)). The results measured on two duplicate columns were very reproducible. Accurate (+/-0.5 %) measurements of the hold-volumes with concentrated and dilute solutions of NO(3)(-) showed that the columns had all nearly the same external porosity. The result cannot be explained by the error made on the volume of the column tube either as it was measured accurately for all the columns. The residual explanation is that the interstitial velocity distribution between the packed particles depends on the chemical nature of the external surface of these particles.  相似文献   

3.
The reduced HETPs of naphtho[2,3-a]pyrene (a polycyclic aromatic hydrocarbon with six condensed phenyl rings) was measured on three different RP-C18columns packed with 5 and 3 microm totally porous silica-B particles, and with 2.7 microm Halo shell particles. The measurements were made at temperatures between ambient and 323 K, the retention factor being kept constant by modifying the eluent composition (water/acetonitrile mixtures). This compound was chosen because (1) it is strongly retained on RP-C18 stationary phases and is eluted only by acetonitrile-rich mobile phases, which have a low viscosity (approximately 0.35 cP). As a result, the C-term of the HETP plots was measured very precisely; (2) this compound does not interact strongly with the bare silica surface. Its adsorption isotherm remains linear up to high concentrations, its UV-absorbance (at lambda=294 nm) is high, and its HETP can be measured accurately and precisely (relative error of 2%). The experimental data were fitted to a general HETP model derived recently. The B term was measured independently, using the parking method to validate the fit in the low velocity range. The kinetics parameters derived from this model allow a qualitative comparison of the performances of the three columns. The column packed with the C18-Halo particles exhibit an unusual rate of HETP increase at high linear velocities, particularly at elevated temperatures (310 and 323 K). A comparison of the HETP data measured for naphtho[2,3-a]pyrene and for bovine serum albumin (BSA), a large protein that is excluded from the mesopore network of all three columns, demonstrates that this behavior is related not to the mass transfer kinetics in the stationary phase but to some unexpected variation of the eddy dispersion with the linear velocity at high temperatures. The coupling theory of eddy dispersion proposed by Giddings fails to describe the data obtained for the Halo column while they predict well those measured on the totally porous materials. The explanation does not reside in the width of the particle size distribution (5% for Halo and approximately 15% for the silica-B particles) but more likely in the roughness of the external surface of the Halo particles.  相似文献   

4.
We measured and compared the characteristics and performance of columns packed with particles of five different C(18)-bonded silica, 3 and 5 microm Luna, 3 microm Atlantis, 3.5 microm Zorbax, and 2.7 microm Halo. The average particle size of each material was derived from the SEM pictures of 200 individual particles. These pictures contrast the irregular morphology of the external surface of the Zorbax and Halo particles and the smooth surface of the Luna and Atlantis particles. In a wide range of mobile phase velocities (from 0.010 to 3 mL/min) and at ambient temperature, we measured the first and second central moments of the peaks of naphthalene, insulin, and bovine serum albumin (BSA). These moments were corrected for the contributions of the extra-column volumes to calculate the reduced HETPs. The C-terms of naphthalene and insulin are largest for the Halo and Zorbax materials and the A-term smallest for the Halo-packed column. The Halo column performs the best for the low molecular weight compound naphthalene (minimum reduced HETP, 1.4) but is not as good as the Atlantis or Luna columns for the large molecular weight compound insulin. The Zorbax column is the least efficient column because of its large C-term. The lowest sample diffusivity through these particles, alone, does not account for the results. It is most likely that the roughness of the external surface of the Halo and Zorbax particles limit the performance of these columns at high flow rates generating an unusually high film mass transfer resistance.  相似文献   

5.
We here report a new type of stationary phase for microcolumns. C18 modified silica monolith particles were prepared by grinding and sieving the silica monolith followed by C18 modification and end-capping, and were used as packing material. Ground silica monolith particles were not spherical but irregular with some residual monolithic network structure. The separation efficiency of the stationary phase made of sieved monolith particles (5-10 microm) was better than that of the stationary phase made of unsieved particles. The microcolumn packed with the sieved C18 ground monolith particles (5-10 microm) showed quite good separation efficiency (height equivalent to theoretical plate, HETP, as low as 15 microm) and it was even superior to the microcolumn packed with a commercial spherical 5 microm C18 stationary phase. The column pressure drop of C18 monolith particles was about two-third of that of the commercial spherical C18 phase. The preparation method of C18 stationary phase with ground and sieved silica monolith particles presumably suggests advantages of simplicity and convenience in modification and washing procedures compared to bulk silica monolith. It also showed both improved separation efficiency and low back pressure.  相似文献   

6.
Reduction of through-pore size and skeleton size of a monolithic silica column was attempted to provide high separation efficiency in a short time. Monolithic silica columns were prepared to have various sizes of skeletons (approximately 1-2 microm) and through-pores (approximately 2-8 microm) in a fused-silica capillary (50-200 microm I.D.). The columns were evaluated in HPLC after derivatization to C18 phase. It was possible to prepare monolithic silica structures in capillaries of up to 200 microm I.D. from a mixture of tetramethoxysilane and methyltrimethoxysilane. As expected, a monolithic silica column with smaller domain size showed higher column efficiency and higher pressure drop. High external porosity (> 80%) and large through-pores resulted in high permeability (K = 8 x 10(-14) -1.3 x 10(-12) m2) that was 2-30 times higher than that of a column packed with 5-mirom silica particles. The monolithic silica columns prepared in capillaries produced a plate height of about 8-12 microm with an 80% aqueous acetonitrile mobile phase at a linear velocity of 1 mm/s. Separation impedance, E, was found to be as low as 100 under optimum conditions, a value about an order of magnitude lower than reported for conventional columns packed with 5-microm particles. Although a column with smaller domain size generally resulted in higher separation impedance and the lower total performance, the monolithic silica columns showed performance beyond the limit of conventional particle-packed columns under pressure-driven conditions.  相似文献   

7.
Generation of a large number of theoretical plates was attempted by capillary HPLC. Monolithic silica columns having small skeletons (ca. 2 μm) and large through-pores (ca. 8 μm) were prepared by a sol–gel method in a fused-silica capillary (50 μm I.D.), and derivatized to C18 phase by on-column reaction. High external porosity (>80%) and large through-pores resulted in high permeability (K=1.2×10−12 m2). The monolithic silica column in the capillary produced a plate height of about 12 μm in 80% acetonitrile at a linear velocity of 1 mm/s. Separation impedance, E value, was found to be as low as 200, that was about an order of magnitude lower than reported values for conventional columns packed with 5 μm particles. Reproducibility of preparation within ±15% was obtained for column efficiency and for pressure drop. It was possible to generate 100,000 plates by using a 130-cm column at very low pressure (<7 kg/cm2). A considerable decrease in column efficiency was observed at high linear velocity, and for solutes with large retention factors due to the slow mobile-phase mass transfer in the large through-pores. The monolithic silica columns, however, showed performance beyond the limit of conventional particle-packed columns in HPLC under favorable conditions.  相似文献   

8.
Low capacity anion exchangers for IC have been prepared by modification of nonporous uniformed silica MICRA microbeads and by modification of the organic polymeric monolithic matrixes prepared in situ in quarz capillary. Due to the small particle size (1.5 microm) high-performance adsorbents were prepared allowing to obtain up to 190,000 tp/m. However, the column possesses a very high back-pressure and can be used in a short length up to 50 mm only to meet the requirements of conventional chromatographic equipment. An analysis of a test mixture of seven anions was completed within 3 min with a back column pressure of about 350 bar (HETP of about 5.5 microm, where HETP is the height equivalent to the theoretical plate). Monolithic capillary columns provide lower efficiency per column unit length than MICRA columns; however, they can be used at a longer length because of their low flow resistance. Monolithic column of ca. 40 cm length has workable pressure below 10 bar and allows separation of a five anions test mixture within less than 10 min. A better efficiency of monolithic column (HETP approximately 75 microm) can be achieved at reduced flow rates when the analysis time is not a critical parameter.  相似文献   

9.
Evaluation of frontal chromatograms   总被引:3,自引:0,他引:3  
A novel pressure-balanced injection valve was evaluated for use with ultrahigh pressure liquid chromatography (UHPLC) at pressures up to 120 MPa (1,200 bar). Fused-silica capillaries (30-33 cm x 100 microm I.D.) packed with nonporous 1.5 microm isohexylsilane-modified (C6) silica particles were employed to study maximum pressure, injection reproducibility, injection time, and sample amount consumed for an injection. The new valve was more reproducible, convenient, and required much less sample than previously used injection systems. The effect of column diameter on efficiency and sensitivity was studied. The 100 microm I.D. columns demonstrated approximately 40% lower efficiency but 10-fold higher sensitivity than the 29 microm I.D. columns. Columns packed with nonporous C6 particles produced higher efficiencies than columns packed with a 1.5 microm porous octadecylsilane-modified (C18) material.  相似文献   

10.
The mass transfer mechanisms in columns packed with old (55 μm Zipax and 5 μm Poroshell) and recently commercialized shell particles (2.7 μm Halo-C(18) and Kinetex-C(18)) were investigated from a physico-chemical point of view. Combining a model of diffusion in heterogeneous packed beds (effective medium theory) with values of the heights equivalent to a theoretical plate (HETPs derived from the first and second central moments of the elution profiles) and of the peak variances provided by the peak parking method, we demonstrate that columns packed with current shell particles perform better than those packed with fully porous particles in resolving low molecular weight compounds because the eddy diffusion term of the van Deemter equation of the former is markedly smaller. The calculation of eddy diffusion in column beds suggests that the smaller A terms are due to smaller trans-column velocity bias in columns packed with shell particles. We also show that the mass transfer of large molecules (e.g., proteins) is faster when the internal volume accessible to the analyte increases. Therefore, it is suggested that shell particles made of concentric layers with average pore sizes increasing with increasing diameter would provide columns with higher efficiency.  相似文献   

11.
Two types of monolithic silica columns derivatized to form an ODS phase, one prepared in a fused silica capillary (SR‐FS) and the other prepared in a mold and clad with an engineering plastic (poly‐ether‐ether‐ketone) (SR‐PEEK), were evaluated. The column efficiency and pressure drop were compared with those of a column packed with 5‐μm ODS‐silica particles and of an ODS‐silica monolith prepared in a mold and wrapped with PTFE tubing (SR‐PTFE). SR‐FS gave a lower pressure drop than a column packed with 5‐μm particles by a factor of 20, and a plate height of 20 μm at a linear velocity below 1 mm/s. SR‐PEEK showed higher flow‐resistance than the other monolithic silica columns, but they still showed a minimum plate height of 8–10 μm and a lower pressure drop than popular commercial columns packed with 5‐μm particles. The evaluation of SR‐FS columns in a CEC mode showed much higher efficiency than in a pressure‐driven mode.  相似文献   

12.
The influence of the average column pressure (ACP) on the elution volume of thiourea was measured on two RPLC columns, packed with Resolve-C18 (surface coverage 2.45 micromol/m2) and Symmetry-C18 (surface coverage 3.18 micromol/m2), and it was compared to that measured under the same conditions on an underivatized silica (Resolve). Five different methanol-water mixtures (20, 40, 60, 80 and 100% methanol, v/v) were used. Once corrected for the compressibility of the mobile phase, the data show that the elution volume of thiourea increases between 3 and 7% on the C18-bonded columns when the ACP increases from 50 to 350 bar, depending on the methanol content of the eluent. No such increase is observed on the underivatized Resolve silica column. This increase is too large to be ascribed to the compressibility of the stationary phase (silica + C18 bonded chains) which accounts for less than 5% of the variation of the retention factor. It is shown that the reason for this effect is of thermodynamic origin, the difference between the partial molar volume of the solute in the stationary and the mobile phase, Delta V, controlling the retention volume of thiourea. While Delta V is nearly constant for all mobile phase compositions on Resolve silica (with Delta V approximately equal to -4 mL/mol), on RPLC phases, it significantly increases with increasing methanol content, particularly above 60% methanol. It varies between -5 mL/mol and -17 mL/mol on Resolve-C18 and between -9 mL/mol and -25 mL/mol on Symmetry-C18. The difference in surface coverage between these two RP-HPLC stationary phases increases the values of Delta V by about 5 mL/mol.  相似文献   

13.
Monolithic capillary columns were prepared by copolymerization of styrene and divinylbenzene inside a 200 microm i.d. fused silica capillary using a mixture of tetrahydrofuran and decanol as porogen. Important chromatographic features of the synthesized columns were characterized and critically compared to the properties of columns packed with micropellicular, octadecylated poly(styrene-co-divinylbenzene) (PS-DVB-C18) particles. The permeability of a 60 mm long monolithic column was slightly higher than that of an equally dimensioned column packed with PS-DVB-C18 beads and was invariant up to at least 250 bar column inlet pressure, indicating the high-pressure stability of the monolithic columns. Interestingly, monolithic columns showed a 3.6 times better separation efficiency for oligonucleotides than granular columns. To study differences of the molecular diffusion processes between granular and monolithic columns, Van Deemter plots were measured. Due to the favorable pore structure of monolithic columns all kind of diffusional band broadening was reduced two to five times. Using inverse size-exclusion chromatography a total porosity of 70% was determined, which consisted of internodule porosity (20%) and internal porosity (50%). The observed fast mass transfer and the resulting high separation efficiency suggested that the surface of the monolithic stationary phase is rather rough and does not feature real pores accessible to macromolecular analytes such as polypeptides or oligonucleotides. The maximum analytical loading capacity of monolithic columns for oligonucleotides was found to be in the region of 500 fmol, which compared well to the loading capacity of the granular columns. Batch-to-batch reproducibility proved to be better with granular stationary phases compared to monolithic stationary phase, in which each column bed is the result of a unique column preparation process.  相似文献   

14.
Peak parking experiments were conducted to study the chromatographic behavior in a RPLC system consisting of a column packed with superficially porous C(18)-particles and a mixture of methanol and water (70/30, v/v). The values of the surface diffusion coefficient and the retention equilibrium constant of a column packed with superficially porous C(18)-particles were comparable to those of columns packed with a C(18)-silica monolith and full-porous C(18)-silica gel particles. The flow-rate dependence of HETP was hypothetically calculated by using moment equations to clarify the influence of the structural characteristics on the chromatographic behavior. The column efficiency of a column packed with the superficially porous particles is higher in the high flow-rate range than that with full-porous spherical particles. This is attributed to the smaller contribution of the intraparticulate mass transfer in the superficially porous particles to band broadening. The moment equations are effective for the quantitative analysis of chromatographic behavior of superficially porous particles.  相似文献   

15.
Monolithic silica capillary columns were successfully prepared in a fused silica capillary of 530 microm inner diameter and evaluated in HPLC after octadecylsilylation (ODS). Their efficiency and permeability were compared with those of columns pakked with 5-microm and 3-microm ODS-silica particles. The monolithic silica columns having different domain sizes (combined size of through-pore and skeleton) showed 2.5-4.0-times higher permeability (K= 5.2-8.4 x 10(-14) m2) than capillary columns packed with 3-mm particles, while giving similar column efficiency. The monolithic silica capillary columns gave a plate height of about 11-13 microm, or 11 200-13 400 theoretical plates/150 mm column length, in 80% methanol at a linear mobile phase velocity of 1.0 mm/s. The monolithic column having a smaller domain size showed higher column efficiency and higher pressure drop, although the monolithic column with a larger domain size showed better overall column performance, or smaller separation impedance (E value). The larger-diameter (530 microm id) monolithic silica capillary column afforded a good peak shape in gradient elution of proteins at a flow rate of up to 100 microL/min and an injection volume of up to 10 microL.  相似文献   

16.
RPLC columns with different surface coverages (a C(1) endcapped column with a bonding density of 3.92 micromol/m(2) and four C(18)-bonded, endcapped columns, with octadecyl chain densities of 0.42, 1.01, 2.03, and 3.15 micromol/m(2)) were used to investigate the effects of the density of the surface coverage of RPLC columns on the adsorption mechanism of a cationic compound, amitriptyline chloride, and on the silanol activity of these columns. The mobile phases used were acetonitrile-water (30/70, v/v) solutions, buffered at either pH 2.7 or pH 6.9. At pH 2.7, the residual silanol groups are not ionized. At pH 6.9, some of these groups are ionized and these surface anions can strongly interact with the cationic compound. The adsorption isotherms were measured by frontal analysis (FA) at pH 2.7 and by frontal analysis by characteristic points (FACP) at pH 6.9, because the very high retention observed at neutral pH made FA measurements excessively long and poorly accurate. The adsorption energy distributions (AEDs) were calculated when possible, according to the expectation-maximization (EM) algorithm. A bimodal and a trimodal energy distribution were found for all the columns at pH 2.7 and 6.9, respectively. The third site measured at pH 6.9 was attributed to the strong ion-exchange interactions between the ionized silanol groups and the amitriptylinium cation. The contribution of the ionized silanol groups to the overall retention is maximum for the phases with intermediary bonding densities (1.01 and 2.03 micromol/m(2)). The peak tailing is most pronounced for the lowest (C(1) column) and the highest (3.15 micromol/m(2)) surface coverages.  相似文献   

17.
The chromatographic performance of a new brand of shell particles is compared to that of a conventional brand of totally porous silica particles having a similar size. The new material (Halo, Advanced Materials Technology, Wilmington, DE) is made of 2.7 microm particles that consist in a 1.7 microm solid core covered with a 0.5 microm thick shell of porous silica. The other material consists of the porous particles of a conventional 3 microm commercial silica-B material. These two columns have the same dimensions, 150 mm x 4.6mm. The reduced plate heights of two low molecular weight compounds, naphthalene and anthracene, two peptides (lys-bradykinin and bradykinin), and four proteins, insulin, lysozyme, beta-lactoglobulin, and bovine serum albumin were measured in a wide flow rate range and analyzed on the basis of the Van Deemter equation and of modern models for its terms. The Halo column provides a smaller axial diffusion coefficient B and a smaller eddy dispersion term A than the other column, a result consistent with its lower internal porosity (in(p)=0.19 versus 0.42) and with the narrower size distribution of its particles (sigma=5% versus 13%). The two columns have similar C terms for the two low molecular weight compounds and for the two peptides. However, the C term of the proteins that are not excluded is markedly lower on the column packed with the Halo particles than on the other column. A recent theoretical analysis of the mass transfer kinetics in shell particles predicts a C term for moderately retained proteins (3相似文献   

18.
The implementation of columns packed with sub-2 μm particles in supercritical fluid chromatography (SFC) is described using neat carbon dioxide as the mobile phase. A conventional supercritical fluid chromatograph was slightly modified to reduce extra column band broadening. Performances of a column packed with 1.8 μm C18-bonded silica particles in SFC using neat carbon dioxide as the mobile phase were compared with results obtained in ultra high performance liquid chromatography (UHPLC) using a dedicated chromatograph. As expected and usual in SFC, higher linear velocities than in UHPLC must be applied in order to reach optimal efficiency owing to higher diffusion coefficient of solutes in the mobile phase; similar numbers of theoretical plates were obtained with both techniques. Very fast separations of hydrocarbons are presented using two different alkyl-bonded silica columns.  相似文献   

19.
The excess adsorption isotherms of methanol, ethanol, 2-propanol, acetonitrile, and tetrahydrofuran from water were measured on five different silica-based packing materials by the minor disturbance method. These materials were prepared with the same lot of 5-microm particles (average pore size 90 A), all endcapped with trimethylchlorosilane (TMS), and bonded to octadecyl chains with different surface coverages (0, 0.42, 1.01, 2.03, and 3.15 micromol/m2). The relative adsorption of one eluent by respect to a second one informs on the heterogeneity of the material (alkyl-bonded and bare silica regions) and on the accessibility of the unreacted silanol groups to the mobile phase. It is shown that the total surface area of the adsorbent decreases with increasing degree of surface coverage with octadecyl chains and that the relative surface area of the regions occupied by accessible silanol groups to the regions occupied by alkyl-bonded groups decreases. For the five columns, an average of 10% of the adsorbent surface area is covered of bare silica accessible to the liquid phase, with a minimum of 5% with tetrahydrofuran and a maximum of 12% with ethanol or 2-propanol. Increasing the surface coverage by the C18 chains causes a significant increase of the attraction potential of the hydrophobic surface toward the organic solvent. This result is confirmed by the increase of the number of adsorbate monolayers with increasing bonding density of the octadecyl chains. This number is twice larger for the 315C18 column than for the C1 column.  相似文献   

20.
Fritless packed silica gel columns were prepared using sol‐gel technology. A part of a 75 μm i.d. fused silica capillary was filled with a mixture of tetramethoxysilane and poly(ethylene glycol). After gelling at 40°C and heating at 300°C, the resultant silica gel was derivatized with dimethyloctadecylchlorosilane. A scanning electron micrograph of a cross‐section of the capillary column showed that the gel took the form of a spherical particle aggregate and adhered to the column inner wall. The column performance was evaluated for electrochromatography using acetonitrile–50 mM HEPES buffer (pH 6.6) (60/40 or 40/60, v/v) as the mobile phase. An electroosmotic flow of 1.0 mm/s was generated with (60/40, v/v) acetonitrile/HEPES buffer at a field strength of 546 V/cm. Using a sol‐gel‐derived packed column at an electroosmotic flow of 0.5 mm/s, efficiencies of up to 1.1×105 plates/m were obtained for retained solutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号