首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Electronic and local structural changes in ramsdellite-type Li(2+x)Ti3O7 compound were investigated by X-ray absorption spectroscopy (XAS) measurements. Upon electrochemical Li-ion insertions, the host lattice with ramsdellite structure is retained, indicated by X-ray powder diffraction. Ti K-edge extended X-ray absorption fine structure (EXAFS) analysis shows, however, slight local structural distortions around Ti ions. The energy shifts and the changes in the peak intensity of Ti K-edge and Ti L-edge XAS reveal the reducing oxidation states of Ti ions as the amount of electrochemically-inserted Li-ion increases. Equally important, oxide ions have a significant effect on the electronic transfer process, suggested by O K-edge XAS. These results on electronic structural changes were interpreted using the Zaanen-Sawatzky-Allen scheme.  相似文献   

2.
The electrochemical lithium insertion reaction of monoclinic Li(3)Fe(2)(PO(4))(3) as cathode materials of lithium-ion batteries was investigated from the viewpoint of the electronic structure around Fe and the polyanion unit (PO(4)). Fe K-edge and L(III,II)-edge XAS measurements revealed that Fe(3+) was reduced to Fe(2+) upon Li insertion. In addition, O K-edge and P K-edge XAS also showed spectral changes upon Li insertion, which corresponded to changes in the electronic structure of the PO(4) polyanion unit. The ab initio density functional calculation was performed within the GGA and LDA+U methods. The LDA+U method reproduced well the cell potential upon lithium intercalation into Li(3)Fe(2)(PO(4))(3), whereas the GGA method underestimated the intercalation. The calculated electronic structure of Li(3)Fe(2)(PO(4))(3) described strong P 3p-O 2p covalent bonding, while weak hybridization was indicated in Fe 3d-O 2p. Moreover, the difference in electronic density between Li(3)Fe(2)(PO(4))(3) and the lithiated model indicated that the polarization effect between inserted Li and oxygen induced the changes in the electronic structure around the polyanion unit.  相似文献   

3.
Investigation on variation of the electronic structure accompanying the electrochemical lithium insertion into the perovskite type oxide, (Li,La)TiO3, has been carried out by X-ray absorption spectroscopy (XAS). During the electrochemical lithium insertion, titanium ion reduced its oxidation state from Ti4+ to Ti3+, while La3+ does not contribute to the reduction reaction resulting from Ti K-edge and La L3-edge XAS, respectively. Furthermore, O K-edge XAS showed marked spectral changes with electrochemical lithium insertion, indicating the electronic structure around oxide ion affected by lithium insertion reaction. From the XAS measurement, we have concluded the variation observed in O K-edge XAS was related to the strong interaction with inserted Li ion. To confirm this, first-principles band calculations were performed for the perovskite structure before and after electrochemical lithium insertion. The calculated results showed that the electron originated from inserted Li transferred to neighboring oxide ion locally as well as to Ti ion. This may be due to local neutralization effect of Li to reduce the electrostatic interaction in the crystal.  相似文献   

4.
In situ hard X-ray absorption spectroscopy (XAS) at metal K-edges and soft XAS at O K-edge and metal L-edges have been carried out during the first charging process for the layered Li1-xCo1/3Ni1/3Mn1/3O2 cathode material. The metal K-edge XANES results show that the major charge compensation at the metal site during Li-ion deintercalation is achieved by the oxidation of Ni2+ ions, while the manganese ions and the cobalt ions remain mostly unchanged in the Mn4+ and Co3+ state. These conclusions are in good agreement with the results of the metal K-edge EXAFS data. Metal L-edge XAS results at different charge states in both the FY and PEY modes show that, unlike Mn and Co ions, Ni ions at the surface are oxidized to Ni3+ during charge, whereas Ni ions in the bulk are further oxidized to Ni4+ during charge. From the observation of O K-edge XAS results, we can conclude that a large portion of the charge compensation during Li-ion deintercalation is achieved in the oxygen site. By comparison to our earlier results on the Li1-xNi0.5Mn0.5O2 system, we attribute the active participation of oxygen in the redox process in Li1-xCo1/3Ni1/3Mn1/3O2 to be related to the presence of Co in this system.  相似文献   

5.
Changes in electronic structure upon electrochemical lithium insertion into two iron compounds, namely, rhombohedral Fe2(SO4)3 with a NASICON-type structure and monoclinic Fe2(MoO4)3, were investigated using X-ray absorption spectroscopy (XAS). Fe K-edge and L(III)- and L(II)-edge XAS revealed that the rearrangement of Fe d electrons or rehybridization of Fe d-O p bonding took place accompanied by the reduction of Fe ions upon Li insertion for both samples and that a larger change in spectra was observed in Fe2(SO4)3. In addition, the changes in the electronic structure of the polyanion units XO4(2-) (X = S or Mo) after Li insertion were also investigated by O K-edge and S K-edge or Mo L(III)-edge XAS. The results indicated that the electronic structure around oxygen markedly changed in Fe2(MoO4)3, while no significant change was observed in Fe2(SO4)3.  相似文献   

6.
Electronic structural changes in LiTi(2)O(4) spinel compounds upon electrochemical lithium insertions were investigated by X-ray absorption spectroscopy (XAS) measurements and first principles calculations based on spin-polarized density functional theory. Ti K-edge, O K-edge XAS spectra and theoretical calculations indicate that oxide ions as well as titanium ions are involved in electronic structural changes caused by electrochemical lithium ion insertions. The considerable effect of the oxide ions in the early 3d transition metal (titanium) oxide system is discussed in this article.  相似文献   

7.
用柠檬酸配位燃烧法合成了Mn1-x(Li,Ti)xCo2O4系列尖晶石型复合氧化物催化剂,使用FTIR和XRD方法对催化剂结构进行表征,通过程序升温氧化反应(TPO)技术对这些催化剂在模拟柴油机尾气条件下进行同时消除NOx和柴油碳黑反应的活性评价。结果表明,掺杂Li或Ti后的Mn1-x(Li,Ti)xCo2O4系列催化剂仍然保持了完整的尖晶石型复合氧化物结构,这些催化剂对同时消除柴油机尾气中的碳黑颗粒和NOx具有良好的催化性能,其中Li或Ti的掺杂量为x=0.05较佳,结合碳黑燃烧与NOx还原总的催化效果,Mn0.95Li0.05Co2O4具有最好的催化活性。  相似文献   

8.
Variations in the electronic structure and structural distortion in multiferroic DyMnO(3) were probed by synchrotron x-ray diffraction, lifetime-broadening-suppressed x-ray absorption spectroscopy (XAS), and ab initio electronic structure calculations. The refined x-ray diffraction data enabled an observation of a diminished local Jahn-Teller distortion of Mn sites within MnO(6) octahedra in DyMnO(3) on applying the hydrostatic pressure. The intensity of the white line in Mn K-edge x-ray absorption spectra of DyMnO(3) progressively increased with the increasing pressure. With the increasing hydrostatic pressure, the absorption threshold of an Mn K-edge spectra of DyMnO(3) shifted toward a greater energy, whereas the pre-edge line slightly shifted to a smaller energy. We provide the spectral evidence for the pressure-induced bandwidth broadening for manganites. The intensity enhancement of the white line in Mn K-edge spectra is attributed to a diminished Jahn-Teller distortion of MnO(6) octahedra in compressed DyMnO(3). A comparison of the pressure-dependent XAS spectra with the ab initio electronic structure calculations and full calculations of multiple scattering using the code FDMNES shows the satisfactory agreement between experimental and calculated Mn K-edge spectra.  相似文献   

9.
In this paper, we report the synthesis of carbon coated Li(Mn0.35Co 0.2Fe0.45)PO4 and discuss the effect of Co2P formation during the carbothermal reduction process, which enhances the electrochemical performance of cathode material for lithium ion batteries. It was observed that Co2P was favorably formed in 5% H2/Ar than in Ar atmosphere. The conductivity of Li(Mn0.35Co0.2Fe0.45)PO4/C sintered at 600-800 degrees C in 5% H2/Ar is increased as the temperature is increased. The O K-edge X-ray absorption near edge spectrum (XANES) demonstrates that content of hole carriers is increased in Li(Mn0.35Co0.2Fe0.45)PO4/C as the amount of Co2P increased. We also observed that the capacity of Li(Mn0.35Co0.2Fe0.45)PO4/C is increased with sintering temperature, and it exhibited a maximum capacity of 166 mAh/g at 700 degrees C. It was found that the enhancement in the discharge capacity of sintered Li(Mn0.35Co0.2Fe0.45)PO4/C was as a result of its higher electrical conductivity under 5% H2/Ar atmosphere as compared with Ar atmosphere.  相似文献   

10.
The Phlebobranch ascidian Perophora annectens surprisingly exhibited a biological Fe/V ratio of approximately 15:1 on multichannel X-ray fluorescence analysis of two independent collections of organisms. Iron K-edge X-ray absorption spectroscopy (XAS) indicated a single form of iron. The XAS K-edge of the first collection of blood cells was shifted approximately +1 eV relative to that of the second, indicating redox activity with average iron oxidation states of 2.67+ and 2.60+. The first-derivative iron XAS K-edge features at 7120.5, 7124, and 7128 eV resembled the XAS of magnetite but not of ferritin or of dissolved Fe(II) or Fe(III). Pseudo-Voigt fits to blood-cell iron K-edge XAS spectra yielded 12.4 integrated units of preedge intensity, indicating a noncentrosymmetric environment. The non-phase-corrected extended X-ray absorption fine structure (EXAFS) Fourier transform spectrum showed a first-shell O/N peak at 1.55 angstroms and an intense Fe-Fe feature at 2.65 angstroms. Fits to the EXAFS required a split first shell with two O at 1.93 angstroms and three O at 2.07 angstroms, consistent with terminal and bridging alkoxide ligands, respectively. More distant shells included three C at 2.87 angstroms, two Fe at 3.08 angstroms, three O at 3.29 angstroms, and one Fe at 3.8 angstroms. Structural models consistent with these findings include a [Fe4(OR)13](2-/3-) broken-edged Fe4O5 cuboid or a [Fe4(OR)14](3-/4-) "Jacob's ladder" with three edge-fused Fe2(OR)2 rhombs. Either of these models represents an entirely new structural motif for biological iron. Vanadium domination of blood-cell metals cannot be a defining trait of Phlebobranch tunicates so long as P. annectens is included among them.  相似文献   

11.
MnO2 nanosheet with acetylene black composite material has been synthesized from layered K0.45MnO2 powder. The electrochemical lithiation reaction of nanosheet composite material proceeds in a different manner from that of the parent material, layered K0.45MnO2 powder. To elucidate the origin of the changes in discharge profile, the electronic and local structures for the nanosheet composites and its parent and protonated material have been investigated by Mn K-edge and O K-edge X-ray absorption spectroscopy (XAS). The results showed that local and electronic structure around Mn ions does not vary during nanosheet formation, while significant changes in electronic structure around oxide ions were observed. Accordingly, it is suggested that the difference observed in discharge profile is due to the electronic structural change induced by nanosheet formation.  相似文献   

12.
Two different cobaltites, LaCoO3 and La0.5Sr0.5CoO3−δ, have been prepared and characterized by means of high energy Co K-edge and low energy O K-edge X-ray absorption spectroscopy (XAS). Even though half of the La(III) is substituted by Sr(II), little or no changes can be detected in the formal oxidation state of cobalt atoms. The presence of strontium cations induces two main effects in the chemical and electronic state of the perovskite. The charge balance with Sr(II) species is reached by the formation of oxygen vacancies throughout the network, which explains the well-known increase in the reactivity of this substituted perovskite. O K-edge XAS experiments show that the Sr(II) species induce the transitions of d electrons of cobalt cations from low to high spin configuration. We propose that this change in spin multiplicity is induced by two cooperative effects: the oxygen vacancies, creating five coordinated cobalt atoms, and the bigger size of Sr(II) cations, aligning the Co-O-Co atoms, and favoring the overlapping of π-symmetry cobalt and oxygen orbitals, reducing the splitting energy of eg and t2g levels.  相似文献   

13.
The cathode in rechargeable lithium-ion batteries operates by conventional intercalation; Li+ is extracted from LiCoO2 on charging accompanied by oxidation of Co3+ to Co4+; the process is reversed on discharge. In contrast, Li+ may be extracted from Mn4+-based solids, e.g., Li2MnO3, without oxidation of Mn4+. A mechanism involving simultaneous Li and O removal is often proposed. Here, we demonstrate directly, by in situ differential electrochemical mass spectrometry (DEMS), that O2 is evolved from such Mn4+ -containing compounds, Li[Ni(0.2)Li(0.2)Mn(0.6)]O2, on charging and using powder neutron diffraction show that O loss from the surface is accompanied by diffusion of transition metal ions from surface to bulk where they occupy vacancies created by Li removal. The composition of the compound moves toward MO(2). Understanding such unconventional Li extraction is important because Li-Mn-Ni-O compounds, irrespective of whether they contain Co, can, after O loss, store 200 mAhg(-1) of charge compared with 140 mAhg(-1) for LiCoO(2).  相似文献   

14.
以Na2CO3, (CH3CO2)2Mn·4H2O, Al2O3, Na3PO4·12H2O和CH3COOLi·2H2O为原料, 通过2次高温固相法和一步水热离子交换法得到一系列铝和磷掺杂的LiMn0.97Al0.03O2, LiMnO1.99(PO4)0.01和LiMn0.97Al0.03O2-x(PO4)x(x=0.01, 0.03, 0.05)化合物. 用X射线衍射(XRD)表征了前驱体及交换产物的晶体结构, 用扫描电镜(SEM) 测定了晶体的形貌. 通过X射线光电子能谱(XPS)、傅里叶红外光谱及恒电流充放电测试, 研究了掺杂离子对合成材料结构及电化学性能的影响. 研究结果表明, Al-PO4复合掺杂综合了Al3+掺杂提高材料的电化学反应活性和减低材料的电化学反应阻抗以及PO43-掺杂增大材料的晶胞体积的特点, 提高材料中Li+的扩散能力, 有效地抑制了材料由于Jahn-Teller效应引起的结构畸变, 改性后的LiMnO2正极材料既保持了较高的容量又获得了良好的电化学循环性能.  相似文献   

15.
The stability of the valence state of the 3d transition metal ions and the stoichiometry of LiMO(2) (M = Co, Ni, Mn) layered oxides at the surface-electrolyte interface plays a crucial role in energy storage applications. The surface oxidation/reduction of the cations caused by the contact of the solids to air or to the electrolyte results in the blocking of the Li-transport through the interface that leads to the fast batteries deterioration. The influence of the end-of-charge voltage on the chemical composition and the oxidation state of 3d transition metal ions, as well as the stability of the solid-electrolyte interface formed during the electrochemical Li-deintercalation/intercalation of the LiCoO(2) and Li(Ni,Mn,Co)O(2), have been investigated by X-ray photoelectron spectroscopy. While the chemical composition of the solid-electrolyte interface is similar for both layered oxide surfaces, the electrochemical cycling to some critical voltage values leads to the disappearance of the interface. By the analysis of the shape of the 2p and 3s photoelectron emissions we show that the formation of the solid-electrolyte interface layer correlates with the partial reduction of the trivalent Co ions at the electrolyte-LiCoO(2) interface and the amount of the Co(2+) ions is increased as the solid-electrolyte interface vanishes. In contrast, the Mn(4+), Co(3+) and Ni(2+) ions of the Li(Ni,Mn,Co)O(2) are stable at the interface under the electrochemical cycling to higher end-of-charge voltage. A correlation between deterioration of the LiCoO(2) and Li(Ni,Mn,Co)O(2) batteries and the change of electronic structure at the surface/interface after the electrochemical cycling has been found. The dissolution of the solid-electrolyte interface layer might be the reason for the fast deterioration of the Li-ion batteries.  相似文献   

16.
Lithium-excess manganese layered oxides, which are commonly described by the chemical formula zLi(2)MnO(3)-(1-z)LiMeO(2) (Me = Co, Ni, Mn, etc.), are of great importance as positive electrode materials for rechargeable lithium batteries. In this Article, Li(x)Co(0.13)Ni(0.13)Mn(0.54)O(2-δ) samples are prepared from Li(1.2)Ni(0.13)Co(0.13)Mn(0.54)O(2) (or 0.5Li(2)MnO(3)-0.5LiCo(1/3)Ni(1/3)Mn(1/3)O(2)) by an electrochemical oxidation/reduction process in an electrochemical cell to study a reaction mechanism in detail before and after charging across a voltage plateau at 4.5 V vs Li/Li(+). Changes of the bulk and surface structures are examined by synchrotron X-ray diffraction (SXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectroscopy (SIMS). SXRD data show that simultaneous oxygen and lithium removal at the voltage plateau upon initial charge causes the structural rearrangement, including a cation migration process from metal to lithium layers, which is also supported by XAS. This is consistent with the mechanism proposed in the literature related to the Li-excess manganese layered oxides. Oxygen removal associated with the initial charge on the high voltage plateau causes oxygen molecule generation in the electrochemical cells. The oxygen molecules in the cell are electrochemically reduced in the subsequent discharge below 3.0 V, leading to the extra capacity. Surface analysis confirms the formation of the oxygen containing species, such as lithium carbonate, which accumulates on the electrode surface. The oxygen containing species are electrochemically decomposed upon second charge above 4.0 V. The results suggest that, in addition to the conventional transition metal redox reactions, at least some of the reversible capacity for the Li-excess manganese layered oxides originates from the electrochemical redox reaction of the oxygen molecules at the electrode surface.  相似文献   

17.
以FePO4·xH2O、V2O5、NH4H2PO4和Li2CO3为原料, 以乙二酸为还原剂, 通过湿化学还原-低温热处理方法制备出锂离子复合正极材料xLiFePO4·yLi3V2(PO4)3. X射线衍射(XRD)结果表明, 合成的材料中橄榄石结构的LiFePO4和单斜晶系的Li3V2(PO4)3两相共存; 从复合材料中LiFePO4、Li3V2(PO4)3相对于相同条件下制备的纯相LiFePO4和Li3V2(PO4)3的晶格常数变化以及结合高分辨透射电子显微镜(HRTEM)、能量散射X射线(EDAX)的结果可以看出, 在复合材料xLiFePO4·yLi3V2(PO4)3中存在部分V和Fe, 分别掺杂在LiFePO4和Li3V2(PO4)3中, 并形成固溶体; X射线光电子能谱(XPS)结果表明, Fe/V在复合材料中的价态与各自在LiFePO4和Li3V2(PO4)3中的价态保持一致, 分别为+2 和+3价. 充放电测试表明, 制备出的复合正极材料电化学性能明显优于单一的LiFePO4和Li3V2(PO4)3; 循环伏安测试表明, 复合正极材料具有优良的脱/嵌锂性能.  相似文献   

18.
The alluaudite lithiated phases Li(0.5)Na(0.5)MnFe(2)(PO(4))(3) and Li(0.75)Na(0.25)MnFe(2)(PO(4))(3) were prepared via a sol-gel synthesis, leading to powders with spongy characteristics. The Rietveld refinement of the X-ray and neutron diffraction data coupled with ab initio calculations allowed us for the first time to accurately localize the lithium ions in the alluaudite structure. Actually, the lithium ions are localized in the A(1) and A(1)' sites of the tunnel. M?ssbauer measurements showed the presence of some Fe(2+) that decreased with increasing Li content. Neutron diffraction revealed the presence of a partial Mn/Fe exchange between the two transition metal sites that shows clearly that the oxidation state of the element is fixed by the type of occupied site. The electrochemical properties of the two phases were studied as positive electrodes in lithium batteries in the 4.5-1.5 V potential window, but they exhibit smaller electrochemical reversible capacity compared with the non-lithiated NaMnFe(2)(PO(4))(3). The possibility of Na(+)/Li(+) ion deintercalation from (Na,Li)MnFe(2)(PO(4))(3) was also investigated by DFT+U calculations.  相似文献   

19.
利用V2O5、LiOH·H2O、H2O2、NH4H2PO4与柠檬酸为原料,通过溶胶-凝胶法合成了碳包覆的Li3V2(PO4)3复合正极材料。采用XPS、XRD、SEM、TEM、拉曼光谱和电化学方法对材料的性能进行了研究。还研究了其结构与焙烧温度、样品电导率和电化学性能的关系。研究表明复合材料具有空间群为P21/n的单斜结构,表面包覆粗糙多孔的碳层。在800 ℃下制备的碳包覆样品的电子导电率高达9.81×10-5 S·cm-1,约为高温固相氢气还原法制备的未包覆碳Li3V2(PO4)3的10000倍。测试结果表明碳包覆Li3V2(PO4)3的电化学性能远优于未包覆碳的样品。在3.0~4.3 V电压范围内,以0.1C和2C倍率充放电时,碳包覆的Li3V2(PO4)3具有高比容量(分别为128和109 mAh·g-1)和优异的循环性能。  相似文献   

20.
Samples of Li(x)Ni0.5Mn0.5O2 and Li(x)Ni(1/3)Mn(1/3)Co(1/3)O2 were prepared as active materials in electrochemical half-cells and were cycled electrochemically to obtain different values of Li concentration, x. Absorption edges of Ni, Mn, Co, and O in these materials of differing x were measured by electron energy loss spectrometry (EELS) in a transmission electron microscope to determine the changes in local electronic structure caused by delithiation. The work was supported by electronic structure calculations with the VASP pseudopotential package, the full-potential linear augmented plane wave code WIEN2K, and atomic multiplet calculations that took account of the electronic effects from local octahedral symmetry. A valence change from Ni2+ to Ni4+ with delithiation would have caused a 3 eV shift in energy of the intense white line at the Ni L3 edge, but the measured shift was less than 1.2 eV. The intensities of the "white lines" at the Ni L-edges did not change enough to account for a substantial change of Ni valence. No changes were detectable at the Mn and Co L-edges after delithiation either. Both EELS and the computational efforts showed that most of the charge compensation for Li+ takes place at hybridized O 2p states, not at Ni atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号