首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary.   We combine a primal mixed finite element approach with a Dirichlet-to-Neumann mapping (arising from the boundary integral equation method) to study the weak solvability and Galerkin approximations of a class of linear exterior transmission problems in potential theory. Our results are mainly based on the Babuska-Brezzi theory for variational problems with constraints. We establish the uniqueness of solution for the continuous and discrete formulations, and show that finite element subspac es of Lagrange type satisfy the discrete compatibility conditions. In addition, we provide the error analysis, including polygonal approximations of the domain, and prove strong convergence of the Galerkin solutions. Moreover, under additional regularity assumptions on the solution of the continuous formulation, we obtain the asymptotic rate of convergence O(h). Received August 25, 1998 / Revised version received March 8, 2000 / Published online October 16, 2000  相似文献   

2.
We apply the boundary integral equation method and a primal mixed finite element approach to study the weak solvability and Galerkin approximations of linear interior transmission problems arising in potential theory and elastostatics. The existence and uniqueness of solution of the resulting weak formulations and of the associated discrete schemes are derived by using the classical theory for variational problems with constraints. Suitable finite element subspaces of Lagrange type satisfying the compatibility conditions are utilized for defining the Galerkin scheme. The error analysis and corresponding rates of convergence are also provided.  相似文献   

3.
In this note we analyze a modified mixed finite element method for second‐order elliptic equations in divergence form. As a model we consider the Poisson problem with mixed boundary conditions in a polygonal domain of R 2. The Neumann (essential) condition is imposed here in a weak sense, which yields the introduction of a Lagrange multiplier given by the trace of the solution on the corresponding boundary. This approach allows to handle nonhomogeneous Neumann boundary conditions, theoretically and computationally, in an alternative and usually easier way. Then we utilize the classical Babu?ka‐Brezzi theory to show that the resulting mixed variational formulation is well posed. In addition, we use Raviart‐Thomas spaces to define the associated finite element method and, applying some elliptic regularity results, we prove the stability, unique solvability, and convergence of this discrete scheme, under appropriate assumptions on the mesh sizes. Finally, we provide numerical results illustrating the performance of the algorithm for smooth and singular problems. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 192–210, 2003  相似文献   

4.
In this paper, efficient numerical methods are developed for the pricing of American options governed by the Black–Scholes equation. The front-fixing technique is first employed to transform the free boundary of optimal exercise prices to some a priori known temporal line for a one-dimensional parabolic problem via the change of variables. The perfectly matched layer (PML) technique is then applied to the pricing problem for the effective truncation of the semi-infinite domain. Finite element methods using the respective continuous and discontinuous Galerkin discretization are proposed for the resulting truncated PML problems related to the options and Greeks. The free boundary is determined by Newton’s method coupled with the discrete truncated PML problem. Stability and nonnegativeness are established for the approximate solution to the truncated PML problem. Under some weak assumptions on the PML medium parameters, it is also proved that the solution of the truncated PML problem converges to that of the unbounded Black–Scholes equation in the computational domain and decays exponentially in the perfectly matched layer. Numerical experiments are conducted to test the performance of the proposed methods and to compare them with some existing methods.  相似文献   

5.
It is the first time for us to combine the local symmetric technique and the weak estimates to investigate the local superconvergence of the finite element method for the Poisson equation in a bounded domain with polygonal boundary where a uniform family of partitions is not required or the solution need not have high global smoothness. Combining a uniform family of triangulations in the interior of domain with a quasiuniform family of triangulations at the boundary of domain, we present a special family of triangulations. By the finite element theory of the derivative of the Green's function presented in this article, we combine the local symmetric technique and the weak estimates to obtain the local superconvergence of the derivative for the quadratic elements. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1854–1876, 2014  相似文献   

6.
We introduce a weak Galerkin finite element method for the valuation of American options governed by the Black-Scholes equation. In order to implement, we need to solve the optimal exercise boundary and then introduce an artificial boundary to make the computational domain bounded. For the optimal exercise boundary, which satisfies a nonlinear Volterra integral equation, it is resolved by a higher-order collocation method based on graded meshes. With the computed optimal exercise boundary, the front-fixing technique is employed to transform the free boundary problem to a one- dimensional parabolic problem in a half infinite area. For the other spatial domain boundary, a perfectly matched layer is used to truncate the unbounded domain and carry out the computation. Finally, the resulting initial-boundary value problems are solved by weak Galerkin finite element method, and numerical examples are provided to illustrate the efficiency of the method.  相似文献   

7.
A finite element method for the solution of Oseen equation in exterior domain is proposed. In this method, a circular artificial boundary is introduced to make the computational domain finite. Then, the exact relation between the normal stress and the prescribed velocity field on the artificial boundary can be obtained analytically. This relation can serve as an boundary condition for the boundary value problem defined on the finite domain bounded by the artificial boundary. Numerical experiment is presented to demonstrate the performance of the method.  相似文献   

8.
吴正朋  余德浩 《计算数学》2004,26(2):237-246
In this paper, we combine a finite element approach with the natural boundary element method to stduy the weak solvability and Galerkin approximations of a class of semilinear exterior boundary value problems. Our analysis is mainly based on the variational formulation with constraints. We discuss the error estimate of the finite element solution and obtain the asymptotic rate of convergence O(h^n) Finally, we also give two numerical examples.  相似文献   

9.
In this paper, based on the natural boundary reduction advanced by Feng and Yu, we couple the finite element approach with the natural boundary element method to study the weak solvability and Galerkin approximation of a class of nonlinear exterior boundary value problems. The analysis is mainly based on the variational formulation with constraints. We prove the error estimate of the finite element solution and obtain  相似文献   

10.
We analyze the finite element approximation of the spectral problem for the linear elasticity equation with mixed boundary conditions on a curved non-convex domain. In the framework of the abstract spectral approximation theory, we obtain optimal order error estimates for the approximation of eigenvalues and eigenvectors. Two kinds of problems are considered: the discrete domain does not coincide with the real one and mixed boundary conditions are imposed. Some numerical results are presented.  相似文献   

11.
Summary. We examine a finite element approximation of a quasilinear boundary value elliptic problem in a three-dimensional bounded convex domain with a smooth boundary. The domain is approximated by a polyhedron and a numerical integration is taken into account. We apply linear tetrahedral finite elements and prove the convergence of approximate solutions on polyhedral domains in the -norm to the true solution without any additional regularity assumptions. Received May 23, 1997 / Published online December 6, 1999  相似文献   

12.
The paper is concerned with the study of an elliptic boundary value problem with a nonlinear Newton boundary condition. The existence and uniqueness of the solution of the continuous pioblem is a consequence of the monotone operator theory. The main attention is paid to the investigation of the finite element approximation using numeriral integration for the evaluation of boundary integrals. The error estimates for the solution of the discrete finite element problem are derived  相似文献   

13.
A general construction technique is presented for a posteriori error estimators of finite element solutions of elliptic boundary value problems that satisfy a Gång inequality. The estimators are obtained by an element–by–element solution of ‘weak residual’ with or without considering element boundary residuals. There is no order restriction on the finite element spaces used for the approximate solution or the error estimation; that is, the design of the estimators is applicable in connection with either one of the hp–, or hp– formulations of the finite element method. Under suitable assumptions it is shown that the estimators are bounded by constant multiples of the true error in a suitable norm. Some numerical results are given to demonstrate the effectiveness and efficiency of the approach.  相似文献   

14.
In this paper,the numerical solutions of heat equation on 3-D unbounded spatial do-main are considered. n artificial boundary Γ is introduced to finite the computationaldomain.On the artificial boundary Γ,the exact boundary condition and a series of approx-imating boundary conditions are derived,which are called artificial boundary conditions.By the exact or approximating boundary condition on the artificial boundary,the originalproblem is reduced to an initial-boundary value problem on the bounded computationaldomain,which is equivalent or approximating to the original problem.The finite differencemethod and finite element method are used to solve the reduced problems on the finitecomputational domain.The numerical results demonstrate that the method given in thispaper is effective and feasible.  相似文献   

15.
This paper presents a superconvergence analysis for the Shortley–Weller finite difference approximation of second-order self-adjoint elliptic equations with unbounded derivatives on a polygonal domain with the mixed type of boundary conditions. In this analysis, we first formulate the method as a special finite element/volume method. We then analyze the convergence of the method in a finite element framework. An O(h 1.5)-order superconvergence of the solution derivatives in a discrete H 1 norm is obtained. Finally, numerical experiments are provided to support the theoretical convergence rate obtained.  相似文献   

16.
带非线性边界条件的反应扩散方程的数值方法   总被引:1,自引:1,他引:0  
1引言近年来关于非线性抛物型方程数值解法的研究取得了许多好的结果,其中以C.V.Pao为主的研究者们利用上、下解方法对带线性边界条件的半线性抛物型方程的有限差分系统进行了广泛的研究,提出了一系列有效的迭代算法(见[1]、[2]、[3]、[4]).但对带非线性边界条件的半线性抛物型方程初边值问题,作者至今尚未见到有研究者将上、下解方法用在相应的差分系统上,求得数值解.其主要原因是由于边界上函数的非线性,解在边界网格点上的值未知且无法用内部网格点上的值直接表示,相应的差分系统表示形式受到影响,边界网…  相似文献   

17.

In this paper we present error estimates for the finite element approximation of linear elastic equations in an unbounded domain. The finite element approximation is formulated on a bounded computational domain using a nonlocal approximate artificial boundary condition or a local one. In fact there are a family of nonlocal approximate boundary conditions with increasing accuracy (and computational cost) and a family of local ones for a given artificial boundary. Our error estimates show how the errors of the finite element approximations depend on the mesh size, the terms used in the approximate artificial boundary condition, and the location of the artificial boundary. A numerical example for Navier equations outside a circle in the plane is presented. Numerical results demonstrate the performance of our error estimates.

  相似文献   


18.
We study spatially semidiscrete and fully discrete two-scale composite finite element method for approximations of the nonlinear parabolic equations with homogeneous Dirich-let boundary conditions in a convex polygonal domain in the plane.This new class of finite elements,which is called composite finite elements,was first introduced by Hackbusch and Sauter[Numer.Math.,75(1997),pp.447-472]for the approximation of partial differential equations on domains with complicated geometry.The aim of this paper is to introduce an efficient numerical method which gives a lower dimensional approach for solving par-tial differential equations by domain discretization method.The composite finite element method introduces two-scale grid for discretization of the domain,the coarse-scale and the fine-scale grid with the degrees of freedom lies on the coarse-scale grid only.While the fine-scale grid is used to resolve the Dirichlet boundary condition,the dimension of the finite element space depends only on the coarse-scale grid.As a consequence,the resulting linear system will have a fewer number of unknowns.A continuous,piecewise linear composite finite element space is employed for the space discretization whereas the time discretization is based on both the backward Euler and the Crank-Nicolson methods.We have derived the error estimates in the L∞(L2)-norm for both semidiscrete and fully discrete schemes.Moreover,numerical simulations show that the proposed method is an efficient method to provide a good approximate solution.  相似文献   

19.
A sensitive issue in numerical calculations for exterior flow problems, e.g.around airfoils, is the treatment of the far field boundary conditions on a computational domain which is bounded. In this paper we investigate this problem for two-dimensional transonic potential flows with subsonic far field flow around airfoil profiles. We take the artificial far field boundary in the subsonic flow region. In the far field we approximate the subsonic potential flow by the Prandtl-Glauert linearization. The latter leads via the Green representation theorem to a boundary integral equation on the far field boundary. This defines a nonlocal boundary condition for the interior ring domain. Our approach leads naturally to a coupled finite element/boundary element method for numerical calculations. It is compared with local boundary conditions. The error analysis for the method is given and we prove convergence provided the solution to the analytic transonic flow problem around the profile exists.

  相似文献   


20.
1.IntroductionManyproblemsarisinginfluidmechanicsaregiveninanunboundeddomain,suchasfluidflowaroundobstacles.Whencomputingthenumericalsolutionsoftheseproblems,oneoftenintroducesartificialboundariesandsetsupaxtificialboundaryconditionsonthem.Thentheoriginal…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号