首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The dipalladium(I) complex Pd(2)Cl(2)(dmpm)(2) (1a) [dmpm = bis(dimethylphosphino)methane] is known to react with elemental sulfur (S(8)) to give the bridged-sulfide complex Pd(2)Cl(2)(μ-S)(dmpm)(2) (2a) but, in the presence of excess S(8), PdCl(2)[P,S-dmpm(S)] (4a) and dmpm(S)(2) are generated. Treatment of 1a with elemental selenium (Se(8)), however, gives only Pd(2)Cl(2)(μ-Se)(dmpm)(2) (3a). Complex 4a is best made by reaction of trans-PdCl(2)(PhCN)(2) with dmpm(S). Complex 2a reacts with MeI to yield initially Pd(2)I(2)(μ-S)(dmpm)(2) and MeCl, and then Pd(2)I(2)(μ-I)(2)(dmpm)(2) and Me(2)S, whereas alkylation of 2a with MeOTf generates the cationic, bridged-methanethiolato complex [Pd(2)Cl(2)(μ-SMe)(dmpm)(2)]OTf (5). Oxidation of 2a with m-CPBA forms a mixture of Pd(2)Cl(2)(μ-SO)(dmpm)(2) and Pd(2)Cl(2)(μ-SO(2))(dmpm)(2), whereas Pd(2)Br(2)(μ-S)(dmpm)(2) reacts selectively to give Pd(2)Br(2)(μ-SO)(dmpm)(2) (6b). Treatment of the Pd(2)X(2)(μ-S)(dmpm)(2) complexes with X(2) (X = halogen) removes the bridged-sulfide as S(8), with co-production of Pd(II)(dmpm)-halide species. X-ray structures of 3a, 5 and 6b are presented. Reactions of dmpm with S(8) and Se(8) are clarified. Differences in the chemistry of the dmpm systems with that of the corresponding dppm systems [dppm = bis(diphenylphosphino)methane] are discussed.  相似文献   

2.
A manganese atom reacts with dioxygen to form the previously characterized MnO 2 molecule in solid argon under UV-visible light irradiation. Subsequent sample annealing allows the dioxygen molecules to diffuse and to react with MnO 2 to give the (eta (2)-O 2)MnO 2 complex, which is characterized to be a side-on bonded peroxo manganese dioxide complex. The manganese tetraoxide MnO 4, which was predicted to be less stable than the (eta (2)-O 2)MnO 2 isomer, was not observed. However, the (eta (2)-O 2)MnO 2 complex reacts with another weakly coordinated dioxygen to give the (eta (2)-O 2)MnO 4 complex via visible light irradiation, in which the manganese tetraoxide is coordinated and stabilized by a side-on bonded O 2 molecule. Manganese dimer reacts with dioxygen to form the cyclic Mn(mu-O) 2Mn cluster spontaneously upon annealing, which further reacts with dioxygen to give the (eta (2)-O 2) 2Mn(mu-O) 2Mn cluster, a side-on bonded disuperoxide complex with a planar D 2 h structure.  相似文献   

3.
Various preparative procedures are employed in order to synthesize alkaline earth metal bis(diphenylamides) such as (i) metalation of HNPh2 with the alkaline earth metal M, (ii) metalation of HNPh2 with MPh2, (iii) metathesis reaction of MI2 with KNPh2, (iv) metalation of HNPh2 with PhMI in THF, and (v) metathesis reaction of PhMI with KNPh2 followed by a dismutation reaction yielding MPh2 and M(NPh2)2. The magnesium compounds [(diox)MgPh2]infinity (1) and (thf)2Mg(NPh2)2 (2) show tetracoordinate metal atoms, whereas in (dme)2Ca(NPh2)2 (3), (thf)4Sr(NPh2)2 (4), and (thf)4Ba(NPh2)2 (5) the metals are 6-fold coordinated. Additional agostic interactions between an ipso-carbon of one of the phenyl groups of the amide ligand and the alkaline earth metal atom lead to unsymmetric coordination of the NPh2 anions with two strongly different M-N-C angles in 3-5.  相似文献   

4.
2(2-Hydroxy-5-isopropenylphenyl)2H-benzotriazole was synthesized in 40% overall yield starting from o-nitroaniline. Diazotization in aqueous hydrochloric acid gave o-nitrophenyl diazonium chloride which was condensed with p-hydroxyacetophenone; the azo compound was reduced to 2(2-hydroxy-5-acetylphenyl) 2H-benzotriazole with zinc powder in sodium hydroxide solution and the 2-hydroxy group of the compound was acetylated. Treatment of the acetyl compound with methyl Grignard reagent resulted in the methylation of the 5-acetyl group to 2[2-acetoxy-5(2-hydroxy-2-propyl)phenyl]2H-benzotriazole which was then dehydrated with potassium hydrogen sulfate to the desired 2(2-hydroxy-5-isopropenylphenyl)2H-benzotriazole. This monomer did not homopolymerize, but was copolymerized readily with styrene, methyl methacrylate, and n-butyl acrylate with azobisisobutyronitrile as the initiator. 2(2-Acetoxy-5-acetylphenyl)2H-benzotriazole was also reduced with sodium borohydride to form 2[2-acetoxy-5-(1-hydroxyethyl)phenyl]2H-benzotriazole which was dehydrated and hydrolyzed to the known 2(2-hydroxy-5-vinylphenyl)-2H-benzotriazole. This route provides a novel and simpler synthesis of 2(2-hydroxy-5-vinylphenyl)2H-benzotriazole.  相似文献   

5.
The reaction of the highly selective [CySCH2CH2N(H)CH2CH2SCy]CrCl3 catalyst precursor with alkyl aluminum activators was examined with the aim of isolating reactive intermediates. Reaction with Me3Al afforded a cationic trivalent chromium alkyl species {[CySCH2CH2N(H)CH2CH2SCy]CrMe(mu-Cl)}2{(AlMe3)2(m-Cl}2.(C7H8)2 (1a). Although it was not possible to obtain crystalline samples of sufficient quality from the reaction with MAO (the most preferred activator), the near-to-identical EPR spectra indicated a very close structural similarity with 1a. Ethylene oligomerization tests clearly revealed that 1 and other cationic trivalent dimeric complexes {[CySCH2CH2N(H)CH2CH2SCy] CrCl(mu-Cl)}2{AlCl4}2.(C7H8)1.5 (2), monomeric [(CySCH2CH2N(H)CH2CH2SCy)CrCl2 (THF)][AlCl4] (3), and {[CySCH2CH2N(H)CH2CH2SCy]Cr(eta2-AlCl4)}{Al2Cl7} (4) adducts display the same catalyst selectivity as the [CySCH2CH2N(H)CH2CH2SCy]CrCl3 complex and, therefore, are probably all precursors to the same catalytically active species. 2, 3, and 4 were obtained upon treatment of [CySCH2CH2N(H)CH2CH2SCy] CrCl3 with different stoichiometric ratios of AlCl3.. When i-BAO activator was used, reduction of the metal center occurred readily, affording {([CySCH2CH2N(H)CH2CH2S Cy]Cr)(mu-Cl)]2}{(i-Bu)2AlCl2}2 (5). 5 is also a selective catalyst, thus indicating that trivalent species are most probably precursors to a divalent catalytically active complex. Reaction of CrCl2(THF)2 with the ligand afforded the labile divalent adduct [CySCH2CH2N(H)CH2CH2SCy]CrCl2(THF) (6), also catalytically active and selective. Instead, deprotonation of the ligand with n-BuLi followed by reaction with CrCl2(THF)2 gave the dinuclear complex [(mu-CySCH2CH2NCH2CH2SCy)CrCl]2 (7), which did not produce oligomers.  相似文献   

6.
[VO2F(L-L)] (L-L = 2,2'-bipyridyl, 1,10-phenanthroline, Me2N(CH2)2NMe2) and [VO2F(py)2] (py = pyridine) have been prepared from the corresponding [VOF3(L-L)] or [VOF3(py)2] and O(SiMe3)2 in MeCN solution. VO2F (itself made from VOF3 and O(SiMe3)2 in MeCN) forms [Me4N][VO2F2] with [Me4N]F, but does not react with neutral N- or O-donor ligands. VO2Cl, prepared from VOCl3 and ozone, reacts with 2,2'-bipyridyl or 1,10-phenanthroline to form [VO2Cl(L-L)], with pyridine or pyridine-N-oxide (L) to produce [VO2Cl(L)2], and with OPPh3 or OAsPh3 (L') gives [VO2Cl(L')]. A second product from the OPPh3 system is the ionic [VO2(OPPh3)3][VO2Cl2] containing a trigonal bipyramidal cation. Neither VO2F nor VO2Cl form isolable complexes with MeCN, thf or MeO(CH2)2OMe, and both are reduced by P-, As-, S- or Se-donor ligands. [Ph4As][VO2X2] (X = F or Cl) react with 2,2'-bipyridyl to form [VO2X(2,2'-bipyridyl)], but similar reactions with weaker O-donor ligands fail. The complexes have been characterised by IR, multinuclear NMR (1H, 19F, 51V or 31P) and UV-visible spectroscopy. X-ray crystal structures are reported for [VO2F(py)2], [VO2Cl(L)2] (L = py or pyNO) and [VO2(OPPh3)3][VO2Cl2].  相似文献   

7.
Gas-phase reactions of Ta(2+) and TaO(2+) with oxidants, including thermodynamically facile O-atom donor N(2)O and ineffective donor CO, as well as intermediate donors C(2)H(4)O (ethylene oxide), H(2)O, O(2), CO(2), NO, and CH(2)O, were studied by Fourier transform ion cyclotron resonance mass spectrometry. All oxidants reacted with Ta(2+) by electron transfer yielding Ta(+), in accord with the high second ionization energy of Ta (ca. 16 eV). TaO(2+) was also produced with N(2)O, H(2)O, O(2), and CO(2), oxidants with ionization energies above 12 eV; CO reacted only by electron transfer. The following charge separation products were also observed: TaN(+) and TaO(+) with N(2)O; and TaO(+) with O(2), CO(2), and CH(2)O. TaOH(2+), formed with H(2)O, reacted with a second H(2)O by proton transfer. TaO(2+) abstracted an electron from N(2)O, H(2)O, O(2), CO(2), and CO. Oxidation of TaO(2+) by N(2)O was also observed to produce TaO(2)(2+); on the basis of density functional theory (DFT) results, this species is a dioxide, {O-Ta-O}(2+). TaO(2)(2+) reacted by electron transfer with N(2)O, CO(2), and CO to give TaO(2)(+). Additionally, it was found that TaO(2)(2+) oxidizes CO to CO(2) and that it acts as a catalyst in the oxidation of CO by N(2)O. TaO(2)(2+) also activates H(2) to form TaO(2)H(2+). On the basis of the rates of electron transfer from N(2)O, CO(2), and CO to Ta(2+), TaO(2+), and TaO(2)(2+), the following estimates were made for the second ionization energies of Ta, TaO, and TaO(2): IE[Ta(+)] = 15.8 ± 0.3 eV, IE[TaO(+)] = 16.0 ± 0.5 eV, and IE[TaO(2)(+)] = 16.9 ± 0.4 eV. These IEs, together with recently reported bond dissociation energies, D[Ta(+)-O] and D[OTa(+)-O], result in the following bond energies: D[Ta(2+)-O] = 657 ± 58 kJ mol(-1) and D[OTa(2+)-O] = 500 ± 63 kJ mol(-1), the first of which is in good agreement with the value obtained by DFT.  相似文献   

8.
在流动余辉装置上, 研究了活性氮与SO2和SOCl2之间的反应过程. 在280~500 nm, 观察到了SO2( A1A2,B1B1→X1A1 )和SO2(a3B1→X1A1)的发射光谱. 对比由Ar(3P0,2)与N2碰撞反应产生的纯N2(A3Σu+)与SO2、SOCl2之间反应的实验结果, 可以说明, N2(A3Σu+)在活性氮与SO2的反应中是主要的能量载体, 它与SO2的直接能量转移反应形成了激发态的SO2(A1A2, B1B1); 在活性氮与SOCl2的反应中观测到的激发态SO2(a3B1), 则可能主要是通过N(4S)与SOCl2反应生成的N2O(X1Σ+)和N2(A3Σu+)与SOCl2反应生成的SO(X3Σ-)之间的化学反应过程产生.  相似文献   

9.
Reactions of laser-ablated Al, Ga, In, and Tl atoms with H2O2 and with H2 + O2 mixtures diluted in argon give new absorptions in the O-H and M-O stretching and O-H bending regions, which are assigned to the metal mono-, di-, and trihydroxide molecules. Isotopic substitutions (D2O2, 18O2, 16,18O2, HD, and D2) confirm the assignments, and DFT calculations reproduce the experimental results. Infrared spectra for the Al(OH)(OD) molecule verify the calculated C2v structure. The trihydroxide molecules increase on annealing from the spontaneous reaction with a second H2O2 molecule. Aluminum atom reactions with the H2 + O2 mixtures favor the HAl(OH)2 product, suggesting that AlH3 generated by UV irradiation combines with O2 to form HAl(OH)2.  相似文献   

10.
Functionalized o-carboranes are interesting ligands for transition metals. Reaction of LiC2B10H11 with Me2NCH2CH2Cl in toluene afforded 1-Me2NCH2CH2-1,2-C2B10H11 (1). Treatment of 1 with 1 equiv. of n-BuLi gave [(Me2NCH2CH2)C2B10H10]Li ([1]Li), which was a very useful synthon for the production of bisfunctional o-carboranes. Reaction of [1]Li with RCH2CH2Cl afforded 1-Me2NCH2CH2-2-RCH2CH2-1,2-C2B10H10 (R = Me2N (2), MeO (3)). 1 and 2 were also prepared from the reaction of Li2C2B10H10 with excess Me2NCH2CH2Cl. Treatment of [1]Li with excess MeI or allyl bromide gave the ionic salts, [1-Me3NCH2CH2-2-Me-1,2-C2B10H10][I] (4) and [1-Me2N(CH2=CHCH2)CH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10][Br] (6), respectively. Interaction of [1]Li with 1 equiv. of allyl bromide afforded 1-Me2NCH2CH2-2-(CH2=CHCH2)-1,2-C2B10H10 (5). Treatment of [1]Li with excess dimethylfulvene afforded 1-Me2NCH2CH2-2-C5H5CMe2-1,2-C2B10H10 (7). Interaction of [1]Li with excess ethylene oxide afforded an unexpected product 1-HOCH2CH2-2-(CH2=CH)-1,2-C2B10H10 (8). 1 and 3 were conveniently converted into the corresponding deborated compounds, 7-Me2NHCH2CH2-7,8-C2B9H11 (9) and 7-Me2NHCH2CH2-8-MeOCH2CH2-7,8-C2B9H10 (10), respectively, in MeOH-MeOK solution. All of these compounds were characterized by various spectroscopic techniques and elemental analyses. The solid-state structures of 4 and 6-10 were confirmed by single-crystal X-ray analyses.  相似文献   

11.
The reaction of diethylmagnesium with diphenylphosphane yields [(THF)Mg(Et)PPh 2] infinity ( 1; THF = tetrahydrofuran) with bridging PPh 2 ligands and average Mg-P bond lengths of 262.2 pm. The metalation reaction of MgEt 2 with HPPh 2 and H 2PPh with a 1:2 stoichiometry gives [(THF) 4Mg(PPh 2) 2] ( 2) and [(THF) 6Mg 4{P(H)Ph} 8] ( 3), respectively. Tetranuclear 3 contains three chemically different phenylphosphanide groups with characteristic P-H stretching frequencies at 2261, 2286, and 2310 cm (-1). The metathesis reaction of potassium phenylphosphanide with CaI 2 yields oligomeric (THF) 3Ca[P(H)Ph] 2 ( 4). A similar reaction with SrI 2 and BaI 2 gives polymeric [(THF) 2Sr{P(H)Ph} 2] infinity ( 5) and [(THF)Ba{P(H)Ph} 2] infinity ( 6), respectively, showing one stretching frequency at 2285 cm (-1). These compounds crystallize polymeric with bridging phenylphosphanide substituents. The addition of Et 2O to a mixture of KPPh 2 and Mg(PPh 2) 2 in THF initiates the crystallization of (Et 2O)K[(THF)Mg(PPh 2) 3] ( 7) with a strand structure and (Et 2O) x(THF) yK 2[Mg(PPh 2) 4] ( 8) with a layer structure depending on the stoichiometry. The crystals of 8 easily lose THF and Et 2O and, therefore, the content of these ethers varies. Recrystallization of 8 from hot 1,4-dioxane (diox) yields (diox) 2K 2[Mg(PPh 2) 4] ( 9) with a layer structure comparable to that of 8. The central structural units are eight-membered K 2Mg 2P 4 rings that are interconnected by P-K-P bridges. In a THF solution, the magnesiates 7- 9 dissociate into the homometallic derivatives KPPh 2 and Mg(PPh 2) 2, as can be seen from NMR experiments.  相似文献   

12.
Adams RD  Kwon OS  Smith MD 《Inorganic chemistry》2002,41(24):6281-6290
The reaction of Mn(2)(CO)(9)(NCMe) with thiirane yielded the sulfidomanganese carbonyl compounds Mn(2)(CO)(7)(mu-S(2)), 2, Mn(4)(CO)(15)(mu(3)-S(2))(mu(4)-S(2)), 3, and Mn(4)(CO)(14)(NCMe)(mu(3)-S(2))(mu(4)-S(2)), 4, by transfer of sulfur from the thiirane to the manganese complex. Compound 3 was obtained in better yield from the reaction of 2 with CO, and compound 4 is obtained from the reaction of 2 with NCMe. The reaction of 2 with PMe(2)Ph yielded the tetramanganese disulfide Mn(4)(CO)(15)(PMe(2)Ph)(2)(mu(3)-S)(2), 5, and S=PMe(2)Ph. The reaction of 5 with PMe(2)Ph yielded Mn(4)(CO)(14)(PMe(2)Ph)(3)(mu(3)-S)(2), 6, by ligand substitution. The reaction of 2 with AsMe(2)Ph yielded the new complexes Mn(4)(CO)(14)(AsMe(2)Ph)(2)(mu(3)-S(2))(2), 7, Mn(4)(CO)(14)(AsMe(2)Ph)(mu(3)-S(2))(mu(4)-S(2)), 8, Mn(6)(CO)(20)(AsMe(2)Ph)(2)(mu(4)-S(2))(3), 9, and Mn(2)(CO)(6)(AsMe(2)Ph)(mu-S(2)), 10. Reaction of 2 with AsPh(3) yielded the monosubstitution derivative Mn(2)(CO)(6)(AsPh(3))(mu-S(2)), 11. Reaction of 7 with PMe(2)Ph yielded Mn(4)(CO)(15)(AsMe(2)Ph)(2)(mu(3)-S)(2), 12. The phosphine analogue of 7, Mn(4)(CO)(14)(PMe(2)Ph)(2)(mu(3)-S(2))(2), 13, was prepared from the reaction of Mn(2)(CO)(9)(PMe(2)Ph) with Me(3)NO and thiirane. Compounds 2-9 and 11-13 were characterized by single-crystal X-ray diffraction. Compound 2 contains a disulfido ligand that bridges two Mn(CO)(3) groups that are joined by a Mn-Mn single bond, 2.6745(5) A in length. A carbonyl ligand bridges the Mn-Mn bond. Compounds 3 and 4 contain four manganese atoms with one triply bridging and one quadruply bridging disulfido ligand. Compounds 5 and 6 contain four manganese atoms with two triply bridging sulfido ligands. Compound 9 contains three quadruply bridging disulfido ligands imbedded in a cluster of six manganese atoms.  相似文献   

13.
The disilene R*PhSi=SiPhR* (R* = supersilyl = SitBu3), which can be quantitatively prepared by dehalogenation of the disilane R*PhClSi-SiBrPhR* with NaR* (yellow, water- and air-sensitive crystals; decomp at ca. 70 degrees C; Si=Si distance 2.182 A), is comparatively reactive. It transforms 1) with Cl2, Br2, HCl, HBr, and HOH under 1,2-addition into disilanes R*PhXSi-SiX'PhR* (X/X' = Hal/Hal, H/Hal, H/OH), 2) with O2, S8, and Sen under insertion into 1,3-disiletanes R*PhSi(-Y-)2SiPhR* (Y = O, S, Se), 3) with Me2C=CH2 under ene reaction into the disilane R*PhRSi-SiHPhR* (R = CH2-CMe=CH2), 4) with N2O, Ten, tBuN identical to C, and Me3SiN=N=N under [2 + 1] cycloaddition into disiliranes -R*PhSi-Y-SiPhR*- (Y = O, Te, C=NtBu, NSiMe3; P4 adds 2 molecules of disilene), 5) with CO2, COS, PhCHO, and Ph2CS under [2 + 2] cycloaddition into disiletanes -R*PhSi-SiPhR*-Y-CO- (Y = O, S) as well as -R*PhSi-SiPhR*-Y-CRPh- (Y/R = O/H, S/Ph), 6) with CS2 and CSe2 under [2 + 3] cycloaddition into ethenes R*2Ph2Si2Y2C = CY2Si2Ph2R*2 (Y = S, Se), and 7) with CH2 = CMe-CMe=CH2 and Ph2CO under [2 + 4] cycloaddition into "Diels-Alder adducts". X-ray structure analyses of seven of these compounds are presented.  相似文献   

14.
Treatment of cis-[RuCl2(dppm)2] (dppm = bis(diphenylphosphino)methane) with dithiocarbamates, NaS2CNR2 (R = Me, Et) and [H2NC5H10][S2CNC5H10], yields cations [Ru(S2CNR2)2(dppm)2](+) and [Ru(S2CNC5H10)2(dppm)2](+), respectively. The zwitterions S2CNC4H8NHR (R = Me, Et) react with the same metal complex in the presence of base to yield [Ru(S2CNC4H8NR)(dppm)2](+). Piperazine or 2,6-dimethylpiperazine reacts with carbon disulfide to give the zwitterionic dithiocarbamate salts H2NC4H6(R2-3,5)NCS2 (R = H; R = Me), which form the complexes [Ru(S2CNC4H6(R2-3,5)NH2)(dppm)2](2+) on reaction with cis-[RuCl2(dppm)2]. Sequential treatment of [Ru(S2CNC4H8NH2)(dppm)2](2+) with triethylamine and carbon disulfide forms the versatile metalla-dithiocarbamate complex [Ru(S2CNC4H8NCS2)(dppm)2] which reacts readily with cis-[RuCl2(dppm)2] to yield [{Ru(dppm)2}2(S2CNC4H8NCS2)]. Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with [Os(CH=CHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] (BTD = 2,1,3-benzothiadiazole), [Pd(C6H4CH2NMe2)Cl]2, [PtCl2(PEt3)2], and [NiCl2(dppp)] (dppp = 1,3-bis(diphenylphosphino)propane) results in the heterobimetallic complexes [(dppm)2Ru(S2CNC4H8NCS2)ML(n))](m+) (ML(n) = Os(CH=CHC6H4Me-4)(CO)(PPh3)2](+), m = 1; ML(n) = Pd(C,N-C6H4CH2NMe2), m = 1; ML(n) = Pt(PEt3)2, m = 2; ML(n) = Ni(dppp), m = 2). Reaction of [NiCl2(dppp)] with H2NC4H8NCS2 yields the structurally characterized compound, [Ni(S2CNC4H8NH2)(dppp)](2+), which reacts with base, CS2, and cis-[RuCl2(dppm)2] to provide an alternative route to [(dppm)2Ru(S2CNC4H8NCS2)Ni(dppp)](+). A further metalla-dithiocarbamate based on cobalt, [CpCo(S2CNC4H8NH2)(PPh3)](2+), is formed by treatment of CpCoI2(CO) with S2CNC4H8NH2 followed by PPh3. Further reaction with NEt3, CS2, and cis-[RuCl2(dppm)2] yields [(Ph3P)CpCo(S2CNC4H8NCS2)Ru(dppm)2](2+). Heterotrimetallic species of the form [{(dppm)2Ru(S2CNC4H8NCS2)}2M](2+) result from the reaction of [Ru(S2CNC4H8NCS2)(dppm)2] and M(OAc)2 (where M = Ni, Cu, Zn). Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with Co(acac)3 and LaCl3 results in the formation of the compounds [{(dppm)2Ru(S2CNC4H8NCS2)}3Co](3+) and [{(dppm)2Ru(S2CNC4H8NCS2)}3La](3+), respectively. The electrochemical behavior of selected examples is also reported.  相似文献   

15.
[H2Ir(OCMe2)2L2]BF4 (1) (L = PPh3), a preferred catalyst for tritiation of pharmaceuticals, reacts with model substrate 2-(dimethylamino)pyridine (py-NMe2; py = 2-pyridyl) to give chelate carbene [H2Ir(py-N(Me)CH=)L2]BF4 (2a) via cyclometalation, H2 loss, and reversible alpha-elimination. Agostic intermediate [H2Ir(py-N(Me)CH2-H)L2]BF4) (4a), seen by NMR, is predicted (DFT(B3PW91) computations) to give C-H oxidative addition to form the alkyl intermediate [(H)(eta2-H2)Ir(py-N(Me)CH2-)L2]BF4. Loss of H2 leads to the fully characterized alkyl [HIr(OCMe2)(py-N(Me)CH2-)L2]BF4 (3a(Me2CO)), which loses acetone to give alkylidene hydride 2a by rapid reversible alpha-elimination. 2a rapidly reacts with excess H2 in d6-acetone to generate [H2Ir(OC(CD3)2)2L2]BF4 (1-d12), 3a((CD3)2CO), and py-NMe2 in a 1:1:1 ratio, showing reversibility and accounting for the selective isotope exchange catalyzed by 1. Reaction of 1 with py-N(CH2)4 gives the fully characterized carbene 2c. A cis-L(2) carbene intermediate, cis-2c, observed by NMR, reacts with CO via retro alpha-elimination to give the alkyl 3cCO, while the trans isomer, 2c, does not react; retro alpha-elimination thus requires the Ir-H bond to be orthogonal to the carbene plane. Consistent with experiment, computational studies show a particularly flat PE surface with activation of the agostic C-H bond giving a less stable H2 complex, then formation of a kinetic carbene complex with cis-L, only seen experimentally for py-N(CH2)4. Hydrides at key positions, together with gain or loss of solvent and H2, flatten the PE (DeltaG) surfaces to allow fast catalysis.  相似文献   

16.
The gas-phase reactions of hydrated electrons with carbon dioxide and molecular oxygen were studied by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Both CO2 and O2 react efficiently with (H2O)n- because they possess low-lying empty pi* orbitals. The molecular CO2- and O2- anions are concurrently solvated and stabilized by the water ligands to form CO2(-)(H2O)n and O2(-)(H2O)n. Core exchange reactions are also observed, in which CO2(-)(H2O)n is transformed into O2(-)(H2O)n upon collision with O2. This is in agreement with the prediction based on density functional theory calculations that O2(-)(H2O)n clusters are thermodynamically favored with respect to CO2(-)(H2O)n. Electron detachment from the product species is only observed for CO2(-)(H2O)2, in agreement with the calculated electron affinities and solvation energies.  相似文献   

17.
Reaction of the flexible dialkynyldigold(I) precursors X(4-C6H4OCH2C-CAu)2 with 1,4-bis(diphenylphosphino)butane gave complexes of formula [[[mu-X(4-C6H4OCH2CCAu)2[mu-(Ph2PCH2CH2CH2CH2PPh2)]]n]. The complexes exist as 25-membered ring compounds with n = 1 when X = O or S, as [2]catenanes with n = 2 when X = CH2 or CMe2, and as a unique doubly braided [2]catenane, containing interlocked 50-membered rings with n = 4 when X = cyclohexylidene. These compounds form easily and selectively by self-assembly; reasons for the selectivity are also discussed.  相似文献   

18.
The amine-elimination reactions of Ln[N(SiMe3)2]2(THF)2(Ln=Sm, Yb and Eu) with amine bis(phenol)s (L1H2=[BunN(CH(2)-2-OC6H(2)-3,5-But2)2]H2; L2H2=[Me2NCH2CH2N(CH(2)-2-OC6H(2)-3,5-But2)2]H2) were investigated. It was found that the number of heteroatom(s) in the ligands has a profound effect on the reaction outcome for the samarium systems. Reaction of the tetradentate diamino-bis(phenol)s L2H2 with Sm[N(SiMe3)2]2(THF)2 afforded a yellow solution, which indicated the complete oxidation of the SmII species, yellow being the characteristic color of SmIII species, while the same reaction with Eu[N(SiMe3)2]2(THF)2 gave a divalent complex with a dimeric structure (EuL2)2. Using the tridentate amine bis(phenol)s L1H2 as the reagent, the novel mixed-valent samarium complex SmIII2SmIIL1(4) was prepared by the same reaction. Both reactions of L1H2 with Yb[N(SiMe3)2]2(THF)2 and Eu[N(SiMe3)2]2(THF)2 yielded the normal divalent lanthanide complexes: monomeric complex for YbII, YbL1(THF)3 and dimeric complex for EuII, (EuL1)2. All of the complexes are well characterized with elemental analyses, IR and 1H NMR spectra for , and , as well as X-ray crystal structure determination in the cases of complexes , , and .  相似文献   

19.
The aminobis(phosphonite) PhN(P(OC6H4OMe-o)2)2 (PNP; 1) reacts with 2 equiv of CuI to give a binuclear complex, Cu2(mu2-I)2(NCCH3)2(mu-PNP) (2), whereas similar reactions with CuCl and CuBr furnish tetranuclear "ladder"-type complexes, Cu4(mu2-X)2(mu3-X)2(mu-PNP)2 (3, X = Cl; 4, X = Br), in excellent yield. The complex 2 when heated under vacuum turns into the tetranuclear complex 5 in a reversible fashion. Similarly, the complexes 3 and 4 on dissolution in CH3CN dissociate reversibly into the corresponding binuclear complexes from which the tetrameric complexes can be readily regenerated. Treatment of 2 with excess of pyridine produces the heterosubstituted derivative, Cu2(mu2-I)2(C5H5N)2(mu-PNP) (6). The interaction of 2 with 2,2'-bipyridine in 1:1 and 1:2 ratios produces the mono- and disubstituted derivatives, Cu2(mu2-I)I(C10H8N2)(mu-PNP) (7) and [Cu2(mu2-I)(C10H8N2)2(mu-PNP)]I (8), respectively. The chloro and bromo analogues of 7 are prepared by treating the tetranuclear derivatives 3 and 4 with 2,2'-bipyridine. Reaction of 2 with 4,4'-bipyridine in the presence of AgOTf gives the cationic complex [Cu4(NCCH3)4(C10H8N2)2(mu-PNP)2](OTf)4 (9), whereas the complex [Cu2(NCCH3)2(mu-PNP)2](OTf)2 (10) was obtained from the reaction of 2 with 1 equiv of 1 and AgOTf. The reactions of 3 and 4 with 2 equiv of 4,4'-bipyridine in acetonitrile afford one-dimensional copper(I) coordination polymers [Cu2(mu2-X)2(mu-PNP)(C10H8N2)]n (13, X = Cl; 14, X = Br). The molecular structures of 2-4, 6-8, 12, and 14 are confirmed by X-ray crystallography.  相似文献   

20.
杂元素冠醚研究 Ⅶ.多硒杂冠醚及其钯配合物的合成   总被引:2,自引:0,他引:2  
李卫平  刘秀芳  徐汉生 《化学学报》1994,52(11):1082-1087
在碱性条件下,1,2-二硒杂环戊烷被硼氢化钠还原成双硒负离子,然后和二醇的二对甲苯磺酸酯或二氯化物缩合成环,得到六个二硒杂冠醚(2a,3a,4a,5a,6a,7a)和七个四硒杂冠醚(2b,3b,4b,5b,6b,7b,8b).同时,通过5a,5b与二氯化钯反应,合成了两个钯配合物,并讨论了其配位特征  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号