首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Pyrolysis-atmospheric pressure chemical ionization was used to study the thermal decomposition of the energetic material cyclotrimethylenetrinitramine (RDX) and characterization of the individual molecular ion products was accomplished by tandem mass spectrometry. The analysis was aided with pyrolysis mass spectra of the (15N)- and perdeuterated RDX isotopes, and molecular formulae were derived for the m/z 46, 60, 74, 75, 85 and 98 molecular ions in the RDX pyrolysis mass spectrum. Equivalent fragments between the daughter ion mass spectra of the unlabeled and labeled RDX were determined in order to define a structure for each pyrolysis feature. Daughter ion mass spectra of pure reference compounds confirmed the identity of five of the six molecular ions. Perdeuterated RDX analyses provided evidence that m/z 74 and 75 are N,N-dimethylformamide and N-nitrosodimethylamine, respectively; m/z 46, 60 and 85 were identified as the protonated forms of formamide, N-methylformamide and dimethylaminoacetonitrile, respectively.  相似文献   

2.
A collisional induced dissociation study of 1,3,5-trinitro-1,3,5 triazacyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX) was carried out using mass analyzed kinetic energy spectrometry. High resolution mass spectra and mass analyzed ion kinetic energy/collisional induced dissociation spectra of RDX and HMX were recorded in the electron impact, chemical ionization and negative ion chemical ionization modes. Fragmentation pathways of the compounds investigated were determined in all three modes of ionization. It was found that a major part of the fragment ions in RDX and HMX originate from formation of the aduct ions [M+NO]+ and [M+NO2]+ in electron impact and chemical ionization, and from [M+NO]? and [M+NO2]? in negative chemical ionization, followed by dissociation.  相似文献   

3.
Dimethylmethyl phosphonate (DMMP), dimethyl phosphite (DMPI), trimethyl phosphite (TMPI) and trimethyl phosphate (TMP) were investigated using H2O and D2O atmospheric-pressure ionization (API) tandem mass Spectrometry. All daughter ions could be explained by losses of one or a successive number of stable molecules as opposed to losses of radicals such as the hydride, methyl and methoxy species. Losses of neutral methanol and dimethyl ether and of protonated methanol and formaldehyde ions from all four organophosphorus pseudo-molecular ions were observed. The DMMP and DMPI MH+ pseudomolecular ions produced the losses of neutral C2H6 and water, respectively. Formaldehyde loss was not observed for the MH+ ions, but it was well represented in the decomposition pathways of daughter ions. The D2O reagent gas highlighted the role of the ionizing proton/ deuteron in the various daughter ions, including m/z 95, 79, 65, 49, 33, 31 and 47. The last ion was found to be isobaric in that m/z 47 and 48 both appeared with similar abundances in the D2O-API daughter ion mass spectra of TMPI and TMP.  相似文献   

4.
The oxidative pyrolysis-atmospheric-pressure chemical ionization tandem mass Spectrometry (Py-APCI MS/MS) of Cyclotrimethylenetrinitramine (RDX) was investigated under various sample introduction conditions. Subambient (0.97 atm) as opposed to ambient (0.98 atm) pressure (1 atm = 101325 kPa) facilitated the appearance of new pyrolysis mass spectral ions, including m/z 44. Deuterated decomposition products from [2H]RDX contained amide groups and, depending on the ion source pressure, significant differences in the degree of proton-deuterium exchange occurred on the amide groups. The D2O Py-APCI MS/MS method also confirmed and extended the analogous H2O APCI information from RDX, [2H]RDX and pure standards. The m/z 44 decompositon species was identified as protonated dimethylimine, [H3CN?CH2]+ as opposed to its primary amine isomer, [H3CC(H)?NH]H+, which contains an acidic proton. It was determined that m/z 60 is due to protonated N-methylformamide and acetaldoxime, [H3CC(H)?NOH]H+.  相似文献   

5.
A study of the metastable spectra from ethoxytrimethylsilane and the mass shifts of the deuterium-labeled species permitted the rationalization of the fragmentation mechanism for forming all major ions in the mass spectrum. A new mechanistic pathway for the formation of [Si(CH3)3]+ (m/z 73) is demonstrated. A strong metastable ion for elimination of neutral acetaldehyde from the parent ion was observed despite the absence of a detectable daughter ion.  相似文献   

6.
The electron impact-induced fragmentation of azobenzenes and its d1, d2, d5, d10, and 15N analogues was studied by mass Spectrometry and ion kinetic energy spectroscopy. The main fragment ions found in the mass spectrum of azobenzene are due to two parallel stepwise processes from the molecular ion: the expulsion of N2 and two hydrogen radicals producing an ion at m/z 152 having possibly a biphenylene radical cation structure and loss of C6H5? and N2. Except in the elimination of two hydrogen atoms from [M ? N2] ions, hydrogen scrambling between the phenyl rings does not feature in azobenzene upon electron impact.  相似文献   

7.
Theoretically new high‐energy‐density materials (HEDM) in which the hydrogens on RDX and β‐HMX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine, respectively) were sequentially replaced by (N NO2)x functional groups were designed and evaluated using density functional theory calculations in combination with the Kamlet–Jacobs equations and an atoms‐in‐molecules (AIM) analysis. Improved detonation properties and reduced sensitivity compared to RDX and β‐HMX were predicted. Interestingly, the RDX and β‐HMX derivatives having one attached N NO2 group [RDX‐(NNO2)1 and HMX‐(NNO2)1] showed excellent detonation properties (detonation velocities: 9.529 and 9.575 km·s−1, and detonation pressures: 40.818 and 41.570 GPa, respectively), which were superior to the parent compounds. Sensitivity estimations obtained by calculating impact sensitivities and HOMO‐LUMO gaps indicated that RDX‐(NNO2)1 and HMX‐(NNO2)1 were less stable than RDX and HMX but more stable than any of the other derivatives. This method of sequential NNO2 group attachment on conventional HEDMs offers a firm basis for further studies on the design of new explosives. Furthermore, the newly found structures may be promising candidates for better HEDMs.  相似文献   

8.
The mass spectral fragmentation of 23 dithia [3.3]naphthalenophanes is discussed. The most characteristic species for these compounds are the M+ ion and ions at m/z 115, 135 (or 136), 141, 155 (or 154) and 185.  相似文献   

9.
Ion-neutral complexes, well attested as intermediates in the expulsion of alkenes from M+? and MH+ ions from primary alkyl phenyl ethers, are shown to intervene in the decomposition of the MH+ ion of a secondary alkyl phenyl ether, (CD3)2CHOPh. Chemical ionization (CI) (methane reagent gas)-mass-analysed ion kinetic energy spectroscopy (MIKES) shows ions of both m/z 96 and 97, indicating that the proton deposited by the CI reagent exchanges with the methyl deuterium atoms. The ratio of daughter ion intensities, as well as the proportions of ions of m/z 95, 96 and 97 from the MH+ of CD3CH2CD2OPh, agree with predictions based on the gas-phase solvolysis mechanism, in which [i-Pr+ PhOH] complexes form from the protonated parent via simple bond heterolysis. An alternative mechanism, elimination-readdition, would proceed via [propene PhOHD+] complexes. This latter mechanism predicts a ratio of daughter ion intensities that is very different from gas-phase solvolysis and which disagrees with experiment. The elimination-readdition pathway is effectively ruled out, while the gas-phase solvolysis mechanism is reinforced.  相似文献   

10.
Helium Plasma Ionization (HePI) generates gaseous negative ions upon exposure of vapors emanating from organic nitro compounds. A simple adaptation converts any electrospray ionization source to a HePI source by passing helium through the sample delivery metal capillary held at a negative potential. Compared with the demands of other He‐requiring ambient pressure ionization sources, the consumption of helium by the HePI source is minimal (20–30 ml/min). Quantification experiments conducted by exposing solid deposits to a HePI source revealed that 1 ng of 2,4,6‐trinitrotoluene (TNT) on a filter paper (about 0.01 ng/mm2) could be detected by this method. When vapor emanating from a 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX) sample was subjected to helium plasma ionization mass spectrometry (HePI‐MS), a peak was observed at m/z 268 for (RDX●NO2)?. This facile formation of NO2? adducts was noted without the need of any extra additives as dopants. Quantitative evaluations showed RDX detection by HePI‐MS to be linear over at least three orders of magnitude. TNT samples placed even 5 m away from the source were detected when the sample headspace vapor was swept by a stream of argon or nitrogen and delivered to the helium plasma ion source via a metal tube. Among the tubing materials investigated, stainless steel showed the best performance for sample delivery. A system with a copper tube, and air as the carrier gas, for example, failed to deliver any detectable amount of TNT to the source. In fact, passing over hot copper appears to be a practical way of removing TNT or other nitroaromatics from ambient air. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetranitroperhydro‐1,3,5,7‐tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low‐pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO3]? even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The ratio of the fragment ions at m/z 122 and m/z 123 in the positive ion fast atom bombardment or secondary ion mass spectra of thiamine hydrochloride varies with sample preparation and experimental conditions. For all mass spectra that contained significant abundances of matrix (S) ions [S + H]+, the fragment at m/z 123 is the more abundant of the two ions. If [S + H]+ ions are not observed in the mass spectrum under the conditions selected, the ion at m/z 122 is more abundant. This correlation suggests that hydrogen transfer to the fragment ion occurs in the gas phase, with the composition of the ion-solvent cluster ions in the selvedge region being the key factor. The ratio of the fragment ions at m/z 123 and m/z 122 is thus an indicator of the extent of protonation in the selvedge, the region immediately above the solvent surface created by primary particle bombardment.  相似文献   

13.
[C8H6O]+˙ ions with o-quinonoid ketene, benzocyclobutenone, phenyl ketene and benzofuran structures have been generated from various precursors. Their collisionally induced decompositions in both field free regions of a double focusing mass spectrometer with so-called reversed geometry have been studied using mass analysed ion kinetic energy scans and B/E linked scans. In both cases the abovementioned [C8H6O]+˙ structures can be distinguished–except the benzocyclobutenone ion which gives very similar spectra to the o-quinonoid ion–on the basis of the intensity ratios [m/z 77]/[m/z 76] and [m/z 104]/[m/z 102]. The stable [C8H6O]+˙ ions generated from the molecular ions of 7 -phenylbicyclo[3.1.1]heptan-6-one appear to have the phenyl ketene structure, as was suspected from previous kinetic energy release measurements.  相似文献   

14.
Under electron impact, the molecular ions of quinoline N-oxide, carbostyril and 8-hydroxyquinoline lose carbon monoxide giving a fragment ion C8H7N (m/z 117), which was shown by collision-activated dissociation in each case to have the structure of the molecular ion of indole. Its formation from 8-hydroxyquinoline requires an unusual rearrangement. Isoquinoline N-oxide loses HCN rather than CO and gives a fragment which has the structure of the molecular ion of benzofuran. When the first three compounds were subjected to flash vacuum pyrolysis, quinoline N-oxide at 500–700°C gave carbostyril and indole was detected by gas chromatography/mass Spectrometry. At 900°C carbostyril and 8-hydroxyquinoline both gave indole in small amounts, detected by gas chromatography/mass Spectrometry.  相似文献   

15.
N-Methylaniline (NMA) was ethylated and N-ethylaniline (NEA) was methylated under chemical ionization conditions using C2H5I and CH3I, respectively, as reagent gases. The structures of the resulting m/z 136 adduct ions have been probed using metastable ion and collision-induced dissociation (CID) methods. From the similarity of the spectra obtained and from the presence of structure-diagnostic ions at m/z 59 (CH3NHC2H5+•) and m/z 44 (CH3NHCH2+), it is concluded that predominantly N-alkylation occurs in both systems. This interpretation was aided by the use of C2D5I and CD3I as reagents. Adduct ions of m/z 136 were also formed by ethylation of the isomeric toluidines and by methylation of the ring-ethylanilines. The resulting CID mass spectra were distinctly different from those obtained for the m/z 136 ions obtained by alkylation of NMA and NEA. Protonation of N-ethyl-N-methylaniline using CH3C(O)CH3 as Brønsted acid reagent produced an m/z 136 species whose CID mass spectrum also featured intense ion signals at m/z 59 and 44. This observation led to the conclusion that protonation with acetone as reagent results, in this case, in dominant N-protonation. However, the CID mass spectrum of the m/z 136 ion formed when CH3OH was the protonating agent featured a weak signal at m/z 44 and no signal at m/z 59. Hence it was concluded that the latter m/z 136 ion contains a larger contribution from the ring-protonated adduct. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
The sodium adduct of disodium salts of benzene dicarboxylic acids (m/z 233), when subjected to collision‐induced dissociation (CID), undergoes a facile loss of CO2 to produce an ion of m/z 189, which retains all the three sodium atoms of the precursor. The CID spectrum of this unusual m/z 189 ion shows significant peaks at m/z 167, 63 and 85. The enigmatic m/z 167 ion, which appeared to represent a loss of a 22‐Da neutral fragment from the precursor ion is in fact a fragment produced by the interaction of the m/z 189 ion with traces of water present in the collision gas. The change of the m/z 167 peak to 168, when D2O vapor was introduced to the collision gas of a Q‐ToF instrument, proved that such an intervention of water could occur even in collision cells of tandem‐in‐space mass spectrometers. The m/z 189 ion has such high affinity for water; it forms an ion/molecule complex even during the brief residence time of ions in collision cells of triple quadrupole instruments. The complex formed in this way then eliminates elements of NaOH to produce the ion observed at m/z 167. In an ion trap, the relative intensity of the m/z 167 peak increases with longer activation time even at the lowest possible collision energy setting. Similarly, the m/z 145 ion (which represents the sodium adduct of phenelenedisodium, formed by two consecutive losses of CO2 from the m/z 233 ion of meta‐ and para‐isomers) interacts with water to produce a fragment ion at m/z 123 for the sodium adduct of phenylsodium. Other uncommon ions that originate also from water/ion interactions are observed at m/z 85 and 63 for [Na3O]+ and [Na2OH]+, respectively. Tandem mass spectrometric experiments conducted with appropriately deuterium‐labeled compounds confirmed that the proton required for the formation of the [Na2OH]+ ion originates from traces of water present in the collision gas and not from the ring protons of the aromatic moiety. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Electrospray‐generated precursor ions usually follow the ‘even‐electron rule’ and yield ‘closed shell’ fragment ions. We characterize an exception to the ‘even‐electron rule.’ In negative ion electrospray mass spectrometry (ES‐MS), 2‐(ethoxymethoxy)‐3‐hydroxyphenol (2‐hydroxyl protected pyrogallol) easily formed a deprotonated molecular ion (M‐H)? at m/z 183. Upon low‐energy collision induced decomposition (CID), the m/z 183 precursor yielded a radical ion at m/z 124 as the base peak. The radical anion at m/z 124 was still the major fragment at all tested collision energies between 0 and 50 eV (Elab). Supported by computational studies, the appearance of the radical anion at m/z 124 as the major product ion can be attributed to the combination of a low reverse activation barrier and resonance stabilization of the product ions. Furthermore, our data lead to the proposal of a novel alternative radical formation pathway in the protection group removal of pyrogallol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
The gas‐phase reactions of Aryl―SF5·+ and Aryl―SO2F·+ have been studied with the electron ionization tandem mass spectrometry. Such reactions involve F‐atom migration from the S‐atom to the aryl group affording the product ion Aryl―F·+ by subsequent expulsion of SF4 or SO2, respectively. Especially, the 4‐pentafluorosulfanylphenyl cation 4‐SF5C6H4+ (m/z 203) from 4‐NO2C6H4SF5·+ by loss of ·NO2 could occur multiple F‐atom migration reactions to the product ion C6H4F3+ (m/z 133) by loss of SF2 in the MS/MS process. The gas‐phase reactions of 2,5‐xylylfluoroiodonium (pXyl―I+F, m/z 251) have also been studied using the electrospray tandem mass spectrometry, which involve a similar F‐atom migration process from the I‐atom to the aryl group giving the radical cation of 2‐fluoro‐p‐xylene (or its isomer 4‐fluoro‐m‐xylene, m/z 124) by reductive elimination of an iodine atom. All these gas‐phase F‐atom migration reactions from the heteroatom to the aryl group led to the aryl―F coupling product ions with a new formed CAryl―F bond. Density functional theory calculations were performed to shed light on the mechanisms of these reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In an effort to better understand the formation of negative reactant ions in air produced by an atmospheric pressure corona discharge source, the neutral vapors generated by the corona were introduced in varying amounts into the ionization region of an ion mobility spectrometer/mass spectrometer containing a 63Ni ionization source. With no discharge gas the predominant ions were O2 , however, upon the introduction of low levels of discharge gas the NO2 ion quickly became the dominant species. As the amount of discharge gas increased the appearance of CO3 was observed followed by the appearance of NO3 . At very high levels, NO3 species became effectively the only ion present and appeared as two peaks in the IMS spectrum, NO3 and the NO3 ·HNO3 adduct, with separate mobilities. Since explosive compounds typically ionize in the presence of negative reactant ions, the ionization of an explosive, RDX, was examined in order to investigate the ionization properties with these three primary ions. It was found that RDX forms a strong adduct with both NO2 and NO3 with reduced mobility values of 1.49 and 1.44 cm2V−1 s−1, respectively. No adduct was observed for RDX with CO3 although this adduct has been observed with a corona discharge mass spectrometer. It is believed that this adduct, although formed, does not have a sufficiently long lifetime (greater than 10 ms) to be observed in an ion mobility spectrometer.  相似文献   

20.
The collision induced dissociation/mass analysed ion kinetic energy mass spectra of 2,5-diphenyltetrazole demonstrate the decay sequence [diphenyltetrazole]→ [diphenylnitrile imine]m/z 91. The m/z 91 ion was shown to be identical to the ion formed by loss of N2 from the phenyl azide radical cation, thus suggesting the phenylnitrene structure for the m/z 91 ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号