首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Determination of the fragmentation mechanisms of organophosphorus ions by H2O and D2O atmospheric-pressure ionization tandem mass spectrometry
Authors:A Peter Snyder  Charles S Harden
Abstract:Dimethylmethyl phosphonate (DMMP), dimethyl phosphite (DMPI), trimethyl phosphite (TMPI) and trimethyl phosphate (TMP) were investigated using H2O and D2O atmospheric-pressure ionization (API) tandem mass Spectrometry. All daughter ions could be explained by losses of one or a successive number of stable molecules as opposed to losses of radicals such as the hydride, methyl and methoxy species. Losses of neutral methanol and dimethyl ether and of protonated methanol and formaldehyde ions from all four organophosphorus pseudo-molecular ions were observed. The DMMP and DMPI MH+ pseudomolecular ions produced the losses of neutral C2H6 and water, respectively. Formaldehyde loss was not observed for the MH+ ions, but it was well represented in the decomposition pathways of daughter ions. The D2O reagent gas highlighted the role of the ionizing proton/ deuteron in the various daughter ions, including m/z 95, 79, 65, 49, 33, 31 and 47. The last ion was found to be isobaric in that m/z 47 and 48 both appeared with similar abundances in the D2O-API daughter ion mass spectra of TMPI and TMP.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号