首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 816 毫秒
1.
Neurotoxic organophosphates (OP) have found widespread use in the environment for insect control. In addition, there is the increasing threat of use of OP based chemical warfare agents in both ground based warfare and terrorist attacks. Together, these trends necessitate the development of simple and specific methods for discriminative detection of ultra low quantities of OP neurotoxins. In our previous investigations a new biosensor for the direct detection of organophosphorus neurotoxins was pioneered. In this system, the enzymatic hydrolysis of OP neurotoxins by organophosphate hydrolase (OPH) generated two protons in each hydrolytic turnover through reactions in which P-X bonds are cleaved. The sensitivity of this biosensor was limited due to the potentiometric method of detection. Recently, it was reported that a change in fluorescence properties of a fluorophore in the vicinity of gold nanoparticles might be used for detection of nanomolar concentrations of DNA oligonucleotides. The detection strategy was based on the fact that an enhancement or quenching of fluorescence intensity is a function of the distances between the gold nanoparticle and fluorophore. While these reports have demonstrated the use of nanoparticle-based sensors for the detection of target DNA, we observed that the specificity of enzyme-substrate interactions could be exploited in similar systems. To test the feasibility of this approach, OPH-gold nanoparticle conjugates were prepared, then incubated with a fluorescent enzyme inhibitor or decoy. The fluorescence intensity of the decoy was sensitive to the proximity of the gold nanoparticle, and thus could be used to indicate that the decoy was bound to the OPH. Then different paraoxon concentrations were introduced to the OPH-nanoparticle-conjugate-decoy mixtures, and normalized ratio of fluorescence intensities were measured. The greatest sensitivity to paraoxon was obtained when decoys and OPH-gold nanoparticle conjugates were present at near equimolar levels. The change in fluorescence intensity was correlated with concentration of paraoxon presented in the solution.  相似文献   

2.
A new strategy for homogeneous detection of DNA hybridization in single-step format was developed based on fluorescence quenching by gold nanoparticles. The gold nanoparticle is functionalized with 5’-thiolated 48-base oligonucleotide (probe sequence), whose 3’-terminus is labeled with fluorescein (FAM), a negatively charged fluorescence dye. The oligonucleotide adopts an extended configuration due to the electrostatic repulsion between negatively charged gold nanoparticle and the FAM-attached probe sequence. After addition of the complementary target sequence, specific DNA hybridization induces a conformation change of the probe from an extended structure to an arch-like configuration, which brings the fluorophore and the gold nanoparticle in close proximity. The fluorescence is efficiently quenched by gold nanoparticles. The fluorescence quenching efficiency is related to the target concentration, which allows the quantitative detection for target sequence in a sample. A linear detection range from 1.6 to 209.4 nmol/L was obtained under the optimized experimental conditions with a detection limit of 0.1 nmol/L. In the assay system, the gold nanoparticles act as both nanoscaffolds and nanoquenchers. Furthermore, the proposed strategy, in which only two DNA sequences are involved, is not only different from the traditional molecular beacons or reverse molecular beacons but also different from the commonly used sandwich hybridization methods. In addition, the DNA hybridization detection was achieved in homogenous solution in a single-step format, which allows real-time detection and quantification with other advantages such as easy operation and elimination of washing steps.  相似文献   

3.
The high quenching efficiency of metal nanoparticles has facilitated its use as quenchers in molecular beacons. To optimize this system, a good understanding of the many factors that influence molecular beacon performance is required. In this study, molecular beacon performance was evaluated as a function of gold nanoparticle size and its immobilization characteristics. Gold nanoparticles of 4 nm, 15 nm and 87 nm diameter, were immobilized onto glass slides. Each size regime offered distinctive optical properties for fluorescence quenching of molecular dyes that were conjugated to oligonucleotides that were immobilized to the gold nanoparticles. Rigid double stranded DNA was used as a model to place fluorophores at different distances from the gold nanoparticles. The effect of particle size and also the immobilization density of nanoparticles was evaluated. The 4 nm and 87 nm gold nanoparticles offered the highest sensitivity in terms of the change in fluorescence intensity as a function of distance (3-fold improvement for Cy5). The optical properties of the molecular fluorophore was of significance, with Cy5 offering higher contrast ratios than Cy3 due to the red-shifted emission spectrum relative to the plasmon peak. A high density of gold nanoparticles reduced contrast ratios, indicating preference for a monolayer of immobilized nanoparticles when considering analytical performance. Molecular beacon probes were then used in place of the double stranded oligonucleotides. There was a strong dependence of molecular beacon performance on the length of a linker used for attachment to the nanoparticle surface. The optimal optical performance was obtained with 4 nm gold nanoparticles that were immobilized as monolayers of low density (5.7 × 1011 particles cm−2) on glass surfaces. These nanoparticle surfaces offered a 2-fold improvement in analytical performance of the molecular beacons when compared to other nanoparticle sizes investigated. The principles developed in this study would assist in the design of solid phase molecular beacons using gold nanoparticles.  相似文献   

4.
We report the first quantitative analysis of the oligonucleotide binding thermodynamics for DNA functionalized gold nanoparticle probes and compare our findings to molecular fluorophore probes on a sequence-for-sequence basis. With proper design, nanoparticle probes show significantly increased binding over molecular fluorophore probes under identical conditions. This is significant because probe binding strength directly influences detection sensitivity limits.  相似文献   

5.
How the efficiency of molecular quenching by Au nanoparticles depends on nanoparticle size is reported for (a) dynamic (collisional) quenching of four different fluorophores by three Au nanoparticles having similar protective layers but differing core diameters (1.1, 1.6, and 2.0 nm) and (b) static quenching in the electrostatic association between [Ru(bpy)3]2+ and five tiopronin-protected Au nanoparticles having core diameters from 1.3 to 3.9 nm. The quenching constants systematically increase with core size. In (a), the dynamic constants scale with the molar absorbance coefficients of the nanoparticles, showing the essentially of the absorbance/emission spectral overlap, and the associated nanoparticle core density of electronic states, in energy-transfer quenching. In (b), the fluorescence of the Au nanoparticle itself was enhanced by energy transfer from the [Ru(bpy)3]2+ fluorophore.  相似文献   

6.
Fluorescence imaging, utilizing molecular fluorophores, often acts as a central tool for the investigation of fundamental biological processes and offers huge future potential for human imaging coupled to therapeutic procedures. An often encountered limitation with fluorescence imaging is the difficulty in discriminating nonspecific background fluorophore emission from a fluorophore localized at a specific region of interest. This limits imaging to individual time points at which background fluorescence has been minimized. It would be of significant advantage if the fluorescence output could be modulated from off to on in response to specific biological events as this would permit imaging of such events in real time without background interference. Here we report our approach to achieve this for the most fundamental of cellular processes, i.e. endocytosis. We describe a new near-infrared off to on fluorescence switchable nanoparticle construct that is capable of switching its fluorescence on following cellular uptake but remains switched off in extracellular environments. This permits continuous real-time imaging of the uptake process as extracellular particles are nonfluorescent. The principles behind the fluorescence off/on switch can be understood by encapsulation of particles in cellular organelles which effect a microenvironmental change establishing a fluorescence signal.  相似文献   

7.
We have developed a new method for selective decomposition of nucleic acids. The method utilizes a high temperature and pressure region (HTP region, hereafter) around a gold nanoparticle, which was generated when the gold nanoparticle was irradiated with a pulsed laser in aqueous solution. A probe DNA molecule whose sequence was complementary to a part of a target DNA molecule was bound to the gold nanoparticle surface. In a solution containing both the target and non-target DNA molecules, the gold nanoparticle selectively attached to the target DNA through hybridization of the probe DNA. When the gold nanoparticle was excited by a pulsed laser, the HTP region was generated in the close vicinity of the gold nanoparticle and then the target DNA molecules inside of this region were decomposed. The non-target DNA molecules having no part complementary to the probe DNA were scarcely decomposed by laser irradiation. When the gold nanoparticle was excited by an intense laser, the non-target DNA molecules were also decomposed, because some of them were located inside the inflated HTP region. We discussed the mechanism of the decomposition of the DNA molecules by the HTP region.  相似文献   

8.
Zheng Q  Chen S  Wang Z  Cui Y 《Talanta》2011,85(1):824-828
A minimal core based fluorophore was introduced as a selectively fluorescent "turn on" sensor for Zn(2+) ions in aqueous solution. Addition of Zn(2+) ions to the fluorophore generates a significant emission through a 1:1 ligand-to-metal complex. The fluorescence titration experiment of the minimal core based fluorophore with various metal ions shows that the pyromellitic diimide derivative also has the advantage of a high selectivity to Zn(2+) ions over other metals such as Ni(2+), or Co(2+), Cu(2+), Fe(3+), Fe(2+). More than 8 fold increase in the intensity of fluorescence was observed for the Zn(2+)-bound fluorophore compared to Zn-free fluorophore. Due to its small molecular size, the fluorophore was cell-permeable and successfully applied to the detection of Zn(2+) in living cells. With its relatively high sensitivity to Zn(2+) in living cells, the synthesized new fluorophore will be very useful in the studies on various biological functions of Zn(2+).  相似文献   

9.
Charge transport through alkane monolayers on gold is measured as a function of molecule length in a controlled ambient using a metal/molecule/nanoparticle bridge structure and compared for both thiol and amine molecular end groups. The current through molecules with an amine/gold junction is observed to be more than a factor of 10 larger than that measured in similar molecules with thiol/gold linkages. Conducting probe atomic force microscopy is also used to characterize the same monolayer systems, and the results are quantitatively consistent with those found in the nanoparticle bridge geometry. Scaling of the current with contact area is used to estimate that approximately 100 molecules are probed in the nanoparticle bridge geometry. For both molecular end groups, the room-temperature conductivity at low bias as a function of molecule length shows a reasonable fit to models of coherent nonresonant charge tunneling. The different conductivity is ascribed to differences in charge transfer and wave function mixing at the metal/molecule contact, including possible effects of amine group oxidation and molecular conformation. For the amine/Au contact, the nitrogen lone pair interaction with the gold results in a hybrid wave function directed along the molecule bond axis, whereas the thiol/Au contact leads to a more localized wave function.  相似文献   

10.
Adsorption characteristics of thionine on gold nanoparticles   总被引:2,自引:0,他引:2  
Adsorption characteristics of thionine on gold nanoparticles have been studied by using UV-vis absorption spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), cyclic voltammetry and Fourier transform infrared spectroscopy. With the increasing concentration of gold nanoparticles, the absorption peak intensity of H-type dimers of thionine increases continuously, whereas that of monomers of thionine first increases and then decreases. The addition of gold nanoparticles makes the equilibrium between the monomer and H-type dimer forms of thionine move toward the dimer forms. Furthermore, the adsorption behavior of thionine on gold nanoparticles is also influenced by temperature. TEM images show that the addition of thionine results in an obvious aggregation, and further support the absorption spectral results. The fluorescence intensity of adsorbed thionine is quenched by gold nanoparticles due to the electronic interaction between thionine molecules and gold nanoparticles. Cyclic voltammetric and infrared spectroscopic studies show that the nitrogen atoms of both of the NH2 moieties of thionine strongly bind to the gold nanoparticle surfaces through the electrostatic interaction of thionine with gold nanoparticles. For 15-20 nm particles, the number of adsorbed thionine molecules per gold nanoparticle is about 7.66 x 10(4). Thionine molecules can not only bind to a particle to form a compact monolayer via both of the NH2 moieties, but they can also bind to two particles via their two NH(2) moieties, respectively.  相似文献   

11.
The fluorescent properties of a new 1,3,5-cyclohexyltricarboxamide-based low-molecular-weight hydrogelator (1) derivatized with one hydrophobic fluorophore and two hydrophilic substituents have been investigated. Gels of 1 are composed of long, nonbranched fibers of uniform diameter, as shown by cryo-transmission electron microscopy (cryo-TEM). The aggregation of the naphthalene fluorophore moieties of the gelator molecules in the gel fibers favors the occurrence of a fast energy migration process that allows a very efficient sensitization of the fluorescence of a hosted fluorophore. Such processes have been investigated by the addition of propyldansylamide (PDNS), at two different concentrations, to gels of 1. Around 30% of the total PDNS added to the gels was found to be incorporated in the gel fibers, as confirmed by deconvolution of the fluorescence spectrum, excited-state lifetime measurements, and steady-state and time-resolved fluorescence anisotropy measurements. Moreover, anisotropy measurements show that the fluorophore that is incorporated within the gel fibers is almost completely immobilized, indicating that the interactions of PDNS with the gelator moieties are very strong. This particular configuration of donor (1) and acceptor (PDNS) molecules leads to a very efficient antenna effect, where 50% of the absorbed photons are funneled through to the dansyl derivative when one PDNS molecule is incorporated in the gel fibers for every 100 gelator molecules. A 5-fold higher concentration of PDNS increases the percentage of funneled photons to 75%.  相似文献   

12.
Gold nanoparticles having sequential alternating amphiphilic peptide chains, Phe-(Leu-Glu)8, on the surface have been prepared. We describe structural control of the amphiphilic peptide coated gold nanoparticle assembly by a conformational transition of the surface peptides. Under the acidic condition, the conformation of the surface amphiphilic peptide was converted to a beta-sheet structure from an aggregated alpha-helix by incubation. Under this condition, the amphiphilic peptide coated gold nanoparticles formed a nanosheet assembly. The plasmon absorption maximum of the gold nanoparticles shifted to a shorter wavelength with the formation of the beta-sheet assembly of the surface peptide. This suggests that the structure of the peptide coated gold nanoparticle assembly could be controlled by the conformational transition of the surface peptide. Furthermore, the core gold nanoparticle could be fixed in the beta-sheet assembly in the state that stood alone. This system may be useful for novel molecular devices that exhibit quantized properties.  相似文献   

13.
Fluorescence-based assays and detection techniques are among the most highly sensitive and popular biological tests for researchers. To match the needs of research and the clinic, detection limits and specificities need to improve, however. One mechanism is to decrease non-specific background signals, which is most efficiently done by increasing fluorescence quenching abilities. Reports in the literature of theoretical and experimental work have shown that metallic gold surfaces and nanoparticles are ultra-efficient fluorescence quenchers. Based on these findings, subsequent reports have described gold nanoparticle fluorescence-based activatable probes that were designed to increase fluorescence intensity based on a range of stimuli. In this way, these probes can detect and signify assorted biomarkers and changes in environmental conditions. In this review, we explore the various factors and theoretical models that affect gold nanoparticle fluorescence quenching, explore current uses of activatable probes, and propose an engineering approach for future development of fluorescence based gold nanoparticle activatable probes.  相似文献   

14.
金纳米粒子-荧光素体系的光谱特性   总被引:5,自引:0,他引:5  
纳米粒子具有量子尺寸效应和表面效应等许多特有的性质 [1] ,在光吸收、医药及新材料等方面具有广阔的应用前景 .纳米粒子具有较高的比表面能且带有电荷 ,当光子与其接近时 ,实际上是光子与纳米粒子的界面电子发生了作用 [2 ,3 ] .基于此建立的共振散射 (RS)光谱技术已成为一种高灵敏度和高选择性的分析技术 ,是研究生物化学和液相纳米粒子特性的良好手段 [4~ 9] .我们 [2 ,3 ] 研究发现 ,较大粒径纳米粒子和界面的形成是导致散射光增强的根本原因 ;金、银等液相纳米粒子产生 RS效应和 RS峰等 .荧光猝灭 (FQ)效应已用于分析化学和蛋白…  相似文献   

15.
Using fluorescence spectrometry, it was found pyrene begins to partition into the core of poly(ε-caprolactone)/poly(N-isopropylacrylamide) (PCL/PNIPAM) core-shell nanoparticles at a low nanoparticle concentration (0.001 mg/mL). The partition coefficient for pyrene partitioning between water and the nanoparticles is around 104. The rate for pyrene partitioning into PCL core is very quick, depending on the relative PCL core weight. And the distinct on-off property of the nanoparticle with temperature was revealed: pyrene molecules enter into PCL core freely when temperature is less than 34 °C; while it becomes difficult when temperature rises to 37 °C. In addition, a new procedure to accurately determine the loading capacity of nanoparticle core for hydrophobic compound using UV-vis spectrometry was developed.  相似文献   

16.
This paper describes the synthesis of gold nanoparticles stabilized by two series of new dendritic disulfide ligands with alkene groups at their peripheries. Intraparticle cross-linking of the alkene groups around the periphery of each nanoparticle was achieved by Grubbs' metathesis. It was demonstrated that cross-linking of the organic ligand has no effect on the size or morphology of the inorganic gold core as determined by TEM and UV-vis measurements. However, the introduction of cross-linking at the surface of the ligand enhances the stability of the gold nanocore toward chemical etchant agents (NaCN) and thermal treatment. The impact of cross-linking on nanoparticle stability is greater when the cross-linking is closer to the nanoparticle surface (i.e., using lower generation dendritic ligands). Attempts to perform further synthetic transformation on the hybrid materials in order to remove the gold core led to insoluble products composed predominantly of the dendritic ligand.  相似文献   

17.
Fluorophores with emission in the second near-infrared window (NIR-II) have displayed salient advantages for biomedical applications. However, the common strategy of reducing the energy bandgap of fluorophores so as to achieve red-shifted wavelengths always leads to compromised fluorescent brightness. Herein, we propose a molecular design concept of “ring-fusion” to modify the acceptor of AIEgen that can extend the luminous wavelength from NIR-I to NIR-II. The fused-acceptor-containing fluorophore yielded, TTQP, has an enhanced absorption coefficient with a higher brightness in nanoparticle formation compared to its NIR-I emissive counterpart (TTQ-DP) with a non-fused acceptor. Theoretical calculation further confirms that the ring fusion can efficiently promote the rigidity and planarity of the electron-deficient core, leading to a lower reorganization energy and nonradiative decay. The TTQP NPs yielded thus allow sensitive NIR-II fluorescence imaging of vasculature and intestinal inflammation in mice models. Therefore, we anticipate that our work will provide a promising molecular-engineering strategy to enrich the library and broaden the application scope of NIR-II fluorophores.  相似文献   

18.
用荧光法来监视多个生理参数时,需要几个不同的荧光探针分子.这些探针分子要被同一波长激发,但是具有明显分离的、不同的发射波长.目前,大多数荧光探针只有小的斯托克位移(50-90 nm),从而限制了它们在多个物质同时检测上的应用.在这项工作中,我们提出了一个新的分子探针设计:受体-荧光分子1-间隔-荧光分子2(简称RFSF...  相似文献   

19.
An environment-sensitive fluorophore can change its maximum emission wavelength (λ(em)), fluorescence quantum yield (Φ(f)), and fluorescence lifetime in response to the surrounding environment. We have developed two new intramolecular charge-transfer-type environment-sensitive fluorophores, DBThD-IA and DBSeD-IA, in which the oxygen atom of a well-established 2,1,3-benzoxadiazole environment-sensitive fluorophore, DBD-IA, has been replaced by a sulfur and selenium atom, respectively. DBThD-IA is highly fluorescent in n-hexane (Φ(f) =0.81, λ(em) =537?nm) with excitation at 449?nm, but is almost nonfluorescent in water (Φ(f) =0.037, λ(em) =616?nm), similarly to DBD-IA (Φ(f) =0.91, λ(em) =520?nm in n-hexane; Φ(f) =0.027, λ(em) =616?nm in water). A similar variation in fluorescence properties was also observed for DBSeD-IA (Φ(f) =0.24, λ(em) =591?nm in n-hexane; Φ(f) =0.0046, λ(em) =672?nm in water). An intensive study of the solvent effects on the fluorescence properties of these fluorophores revealed that both the polarity of the environment and hydrogen bonding with solvent molecules accelerate the nonradiative relaxation of the excited fluorophores. Time-resolved optoacoustic and phosphorescence measurements clarified that both intersystem crossing and internal conversion are involved in the nonradiative relaxation processes of DBThD-IA and DBSeD-IA. In addition, DBThD-IA exhibits a 10-fold higher photostability in aqueous solution than the original fluorophore DBD-IA, which allowed us to create a new robust molecular nanogel thermometer for intracellular thermometry.  相似文献   

20.
In recent years, there has been a massive effort to develop molecular probes with optical modes of action. Probes generally produce detectable signals based on changes in fluorescence properties. Here, we demonstrate the potential of self-immolative molecular adaptors as a platform for Turn-On probes based on the FRET technique. The probe is equipped with identical fluorophore pairs or a fluorophore/quencher FRET pair and a triggering substrate. Upon reaction of the analyte of interest with the triggering substrate, the self-immolative adaptor spontaneously releases the two dye molecules to break off the FRET effect. As a result, a new measurable fluorescent signal is generated. The fluorescence obtained can be used to quantify the analyte. The modular structure of the probe design will allow the preparation of various chemical probes based on the FRET activation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号