首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In this article we study the spatial behaviour of solutions for the three-phase-lag heat equation on a semi-infinite cylinder. First, we investigate the spatial evolution of solutions of an initial boundary-value problem with zero boundary conditions on the lateral surface of the cylinder. Under null initial data, a Phragmen–Lindelof alternative is obtained. An upper bound for the amplitude term in terms of the boundary data is also established. For the case of decay solutions, an improvement is obtained. We prove that the decay can be controlled by the exponential of a second-degree polynomial in the distance from the finite end of the cylinder. A class of non-standard problems is also considered for which the temperature and its first two time derivatives at a fixed time T 0 are assumed proportional to their initial values. These results are relevant in the context of the Saint-Venant Principle for heat conduction problems.  相似文献   

2.
In this paper we study the spatial behaviour of solutions of some problems for the dual‐phase‐lag heat equation on a semi‐infinite cylinder. The theory of dual‐phase‐lag heat conduction leads to a hyperbolic partial differential equation with a third derivative with respect to time. First, we investigate the spatial evolution of solutions of an initial boundary‐value problem with zero boundary conditions on the lateral surface of the cylinder. Under a boundedness restriction on the initial data, an energy estimate is obtained. An upper bound for the amplitude term in this estimate in terms of the initial and boundary data is also established. For the case of zero initial conditions, a more explicit estimate is obtained which shows that solutions decay exponentially along certain spatial‐time lines. A class of non‐standard problems is also considered for which the temperature and its first two time derivatives at a fixed time T are assumed proportional to their initial values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
This paper employs the weighted energy method to derive estimates for the dynamic behavior of solutions to boundary and initial boundary value problems with nonhomogeneous boundary conditions. In particular, the method is applied to the heat and Laplace equations in a bounded or unbounded region. Extensions to related equations are also studied. Similar estimates but for the spatial behavior is obtained for the heat equation and the backward in time heat equation. Results for blow-up in finite time of solutions to certain nonlinear equations are generalized to include nonhomogeneous boundary conditions, while solutions that vanish on part of the boundary are briefly discussed in the final section.  相似文献   

4.
Long time existence of regular solutions to the Navier–Stokes equations for velocity and pressure coupled with the heat convection equation for temperature in cylindrical pipe with inflow and outflow is shown. We assume the slip boundary conditions for velocity and the Neumann conditions for temperature. First, an appropriate estimate is shown, and next the existence of solutions is proved by the Leray–Schauder fixed point theorem. The estimate is obtained for a long time, which is possible because L2 norms of derivatives in the direction along the cylinder of the initial velocity, initial temperature and the external force are sufficiently small. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Analytical solutions to the heat conduction problems for a cylinder and a ball are obtained by the integral method of heat balance. To improve the accuracy of the solutions, the temperature function is approximated by polynomials of high degrees. Their coefficients are determined via introducing additional boundary conditions, which are found from the governing differential equation and the basic boundary conditions, including those specified at the temperature perturbation front. It is shown that the additional boundary conditions, even in the second approximation, lead to a considerable improvement in the solution accuracy.  相似文献   

6.
We consider boundary value problems for the differential equations Δ2 u + B u = 0 with operator coefficients B corresponding to initial-boundary value problems for the diffusion equation Δ3 upu = t u (p > 0) on a right cylinder with inhomogeneous boundary conditions on the lateral surface of the cylinder with zero boundary conditions on the bases of the cylinder and with zero initial condition. For their solution, we derive specific boundary integral equations in which the space integration is performed only over the lateral surface of the cylinder and the kernels are expressed via the fundamental solution of the two-dimensional heat equation and the Green function of corresponding one-dimensional initial-boundary value problems of diffusion. We prove uniqueness theorems and obtain sufficient existence conditions for such solutions in the class of functions with continuous L 2-norm.  相似文献   

7.
We investigate the nonlinear third-order differential equation (uxx ? u)t + u xxx + uux = 0 describing the processes in semiconductors with a strong spatial dispersion. We study the problem of the existence of global solutions and obtain sufficient conditions for the absence of global solutions for some initial boundary value problems corresponding to this equation. We consider examples of solution blowup for initial boundary value and Cauchy problems. We use the Mitidieri-Pokhozhaev nonlinear capacity method.  相似文献   

8.
A finite integral transform (FIT)-based analytical solution to the dual phase lag (DPL) bio-heat transfer equation has been developed. One of the potential applications of this analytical approach is in the field of photo-thermal therapy, wherein the interest lies in determining the thermal response of laser-irradiated biological samples. In order to demonstrate the applicability of the generalized analytical solutions, three problems have been formulated: (1) time independent boundary conditions (constant surface temperature heating), (2) time dependent boundary conditions (medium subjected to sinusoidal surface heating), and (3) biological tissue phantoms subjected to short-pulse laser irradiation. In the context of the case study involving biological tissue phantoms, the FIT-based analytical solutions of Fourier, as well as non-Fourier, heat conduction equations have been coupled with a numerical solution of the transient form of the radiative transfer equation (RTE) to determine the resultant temperature distribution. Performance of the FIT-based approach has been assessed by comparing the results of the present study with those reported in the literature. A comparison of DPL-based analytical solutions with those obtained using the conventional Fourier and hyperbolic heat conduction models has been presented. The relative influence of relaxation times associated with the temperature gradients (τT) and heat flux (τq) on the resultant thermal profiles has also been discussed. To the best of the knowledge of the authors, the present study is the first successful attempt at developing complete FIT-based analytical solution(s) of non-Fourier heat conduction equation(s), which have subsequently been coupled with numerical solutions of the transient form of the RTE. The work finds its importance in a range of areas such as material processing, photo-thermal therapy, etc.  相似文献   

9.
We consider the initial and boundary value problem of heat flow of equation of surfaces of constant mean curvatures. We give sufficient conditions on the initial data such that the heat flow develops finite time singularity. We also provide a new set of initial data to guarantee the existence of global regular solutions to the heat flow that converges to zero in H 1 exponentially as time goes to infinity.  相似文献   

10.
Using additional unknown functions and additional boundary conditions in the integral method of heat balance, we obtain approximate analytic solutions to the non-stationary thermal conductivity problem for an infinite solid cylinder that allow to estimate the temperature state practically in the whole time range of the non-stationary process. The thermal conducting process is divided into two stages with respect to time. The initial problem for the partial differential equation is represented in the form of two problems, in which the integration is performed over ordinary differential equations with respect to corresponding additional unknown functions. This method allows to simplify substantially the solving process of the initial problem by reducing it to the sequential solution of two problems, in each of them additional boundary conditions are used.  相似文献   

11.
12.
The author obtains an estimate for the spatial gradient of solutions of the heat equation, subject to a homogeneous Neumann boundary condition, in terms of the gradient of the initial data. The proof is accomplished via the maximum principle; the main assumption is that the sufficiently smooth boundary be convex.  相似文献   

13.
The dual-phase-lag heat transfer model is applied to investigate the transient heat conduction in an infinitely long solid cylinder for an exponentially decaying pulse boundary heat flux and for a short-pulse boundary heat flux. A hybrid application of the Laplace transform method and the control volume scheme is used to obtain the numerical solutions. Comparison between the numerical results and the analytic solution for an exponentially decaying heat flux pulse evidences the accuracy of the present numerical results. Results further show that the present numerical scheme can overcome the mathematical difficulties to analyze such problems. Effects of the thermal lag ratio τq/τT, the shift time τqτT, the function form of heating pulse, and geometry of medium on the behavior of heat transfer are investigated.  相似文献   

14.
Decay bounds are derived for the solution of a heat conduction problem in a semi-infinite cylinder when the lateral surface is held at zero temperature, a nonzero temperature is prescribed on the finite base, and the temperature at time T is prescribed to be a constant multiple of the temperature at initial time. Both energy and pointwise decay bounds are computed for a range of values of the constant multiple. Such problems were originally introduced as a means of stabilizing the backward-in-time problem for the heat equation.  相似文献   

15.
The local well-posedness of the minimizer of an optimal control problem is studied in this paper. The optimization problem concerns an inverse problem of simultaneously reconstructing the initial temperature and heat radiative coefficient in a heat conduction equation. Being different from other ordinary optimization problems, the cost functional constructed in the paper is a binary functional which contains two independent variables and two independent regularization parameters. Particularly, since the status of the two unknown coefficients in the cost functional are different, the conjugate theory which is extensively used in single-parameter optimization problems cannot be applied for our problem. The necessary condition which must be satisfied by the minimizer is deduced. By assuming the terminal time T is relatively small, an L2 estimate regarding the minimizer is obtained, from which the uniqueness and stability of the minimizer can be deduced immediately.  相似文献   

16.
The major target of this paper is to construct new nonlinear boundary–initial value problems for Boussinesq–Burgers Equations, and derive the solutions of these nonlinear boundary–initial value problems by the simplified homogeneous balance method. The nonlinear transformation and its inversion between the Boussinesq–Burgers Equations and the linear heat conduction equation are firstly derived; then a new nonlinear boundary–initial value problem for the Boussinesq–Burgers equations with variable damping on the half infinite straight line is put forward for the first time, and the solution of this nonlinear boundary–initial value problem is obtained, especially, the decay mode solution of nonlinear boundary–initial value problem for the cylindrical (spherical) Boussinesq–Burgers equations is obtained.  相似文献   

17.
研究长柱体区域中的热传导方程.通过构造辅助函数,利用Hopf极值原理,得到整体解的充分条件,并给出解的逐点估计与空间衰减估计.  相似文献   

18.
In this article, we proposed the operational approach to the Tau method for solving linear and nonlinear one‐dimensional transient heat conduction equations with variable thermophysical properties which can involve heat generation term. To solve heat conduction equation, first we recall the Tau method to obtain a matrix form of the governing differential equation. Then boundary and initial conditions are transformed into a matrix form. Finally the resulting systems of linear or nonlinear algebraic equations are given. Afterwards, efficient error estimation is also introduced for this method. Some numerical examples are given to illustrate the efficiency and high accuracy of the proposed method and also results are compared with solutions obtained by other methods. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 964–977, 2014  相似文献   

19.
In this paper we study the time differential dual-phase-lag model of heat conduction incorporating the microstructural interaction effect in the fast-transient process of heat transport. We analyze the influence of the delay times upon some qualitative properties of the solutions of the initial boundary value problems associated to such a model. Thus, the uniqueness results are established under the assumption that the conductivity tensor is positive definite and the delay times τq and τT vary in the set {0 ≤ τq ≤ 2τT} ∪ {0 < 2τT < τq}. For the continuous dependence problem we establish two different estimates. The first one is obtained for the delay times with 0 ≤ τq ≤ 2τT, which agrees with the thermodynamic restrictions on the model in concern, and the solutions are stable. The second estimate is established for the delay times with 0 < 2τT < τq and it allows the solutions to have an exponential growth in time. The spatial behavior of the transient solutions and the steady-state vibrations is also addressed. For the transient solutions we establish a theorem of influence domain, under the assumption that the delay times are in {0 < τq ≤ 2τT} ∪ {0 < 2τT < τq}. While for the amplitude of the harmonic vibrations we obtain an exponential decay estimate of Saint–Venant type, provided the frequency of vibration is lower than a critical value and without any restrictions upon the delay times.  相似文献   

20.
In previous papers we considered the Cauchy problem for the one-dimensional evolution p-Laplacian equation for nonzero, bounded, and nonnegative initial data having compact support, and showed that after a finite time the set of spatial critical points of the nonnegative solution u=u(xt) in {u>0} consists of one point, the spatial maximum point of u, and the curve of the spatial maximum points is continuous with respect to the time variable. Since the spatial derivative ∂xu satisfies the porous medium equation with sign changes, the curve of the spatial maximum points is regarded as an interface with sign changes of ∂xu. On the other hand, in a paper by M. Bertsch and D. Hilhorst (1991, Appl. Anal.41, 111-130) the interfaces where the solutions change their sign were studied in detail for the initial-boundary value problems of the generalized porous medium equation over two-dimensional cylinders. But the monotonicity of the initial data is assumed there. As is noted in Section 4 of our earlier work (1996, J. Math. Anal. Appl.203, 78-103), the monotonicity of ∂xu(?, t) in some neighborhood of the spatial maximum point of u(?, t) cannot be assumed, and therefore, if this monotonicity for some large t>0 is proved, then by the method of Bertsch and Hilhorst (cited above) one may get more precise regularity properties of the curve of the spatial maximum points. The purpose of the present paper is twofold. One is to remove some monotonicity assumption for initial data in Bertsch and Hilhorst's theorem concerning the regularity of the interfaces with sign changes of solutions of the one-dimensional generalized porous medium equation. By comparing the solution with appropriate symmetric nonnegative solutions we shall get the monotonicity of the solution near the interface after a finite time. The other is as a by-product of the method to get C1 regularity of the curves of the spatial maximum points of nonnegative solutions of the Cauchy problem for the evolution p-Laplacian equation for sufficiently large t.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号