首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
花生叶表面的高黏附超疏水特性研究及其仿生制备   总被引:2,自引:0,他引:2       下载免费PDF全文
花生是一种常见的豆科作物.与低黏附超疏水的荷叶不同,花生叶表面同时具有超疏水和高黏附特性.水滴在花生叶表面的接触角为151±2°,显示出超疏水特性.此外,水滴可以牢固地附着在花生叶表面,将花生叶翻转90°甚至180°,水滴均不会从表面滚落,显示了良好的黏附性(黏附力超过80μN).研究发现,花生叶表面呈现微纳米多级结构,丘陵状微米结构表面具有无规则排列的纳米结构.花生叶表面特殊的微纳米多尺度结构是其表面呈现高黏附超疏水特性的关键因素.结合实验数据,对花生叶表面特殊浸润性机理进行了简要阐述.受此启发,利用聚二甲基硅氧烷复形得到了与花生叶表面微结构类似的高黏附疏水表面.本文以期为仿生制备高黏附超疏水表面提供新思路.  相似文献   

2.
本文论述了用一种新型的金属铝隧道孔模板制备较大面积的纳/微分级结构阵列材料。结合化学镀法在该高纯铝隧道孔模板中制备了具有微纳米阵列结构的金属镍薄膜。研究发现,制备的镍阵列薄膜材料表面呈现超亲水性,以低表面能氟硅烷修饰后,该表面变为超疏水性。  相似文献   

3.
提出一种柔性复制法,采用微注射压缩(μ-ICM)成型具有微拓扑结构的仿生聚丙烯(PP)表面.通过复制模板上的双级微结构,所成型的PP材料表面上呈现具有锥形顶面的双级微结构,即微棱和高纵横比的微锥体.由于微锥体之间的间隙较大,水滴浸润其间隙的上方,这使该表面呈现中等黏附的超疏水特性.在μ-ICM过程中,涂覆在模板上的二氧化硅纳米粒子(SNPs)被转移到熔体中,并牢牢附着于微结构表层,赋予其表面亚微米或微米粗糙度,形成多层次微结构.在附着有亲水SNPs的微结构上,高表面自由能使水滴完全浸润微锥体之间的间隙,表面的水接触角为161.9°、滚动角大于90°,呈现极高黏附的超疏水特性(花瓣效应);在附着有疏水SNPs的微结构上,水滴受疏水SNPs的排斥而减弱与表面之间的黏附作用,表面的水接触角为163.5°、滚动角为3.5°,呈现极低黏附的超疏水特性(荷叶效应).  相似文献   

4.
孙巍  周雨辰  陈忠仁 《高分子学报》2012,(12):1459-1464
利用粒子辅助水滴模板法的实施获得规则蜂窝状图案化多孔结构模板,并进一步利用聚二甲基硅氧烷(PDMS)复制转移技术获得表面具有微米尺寸蜂窝状突起阵列的反向图案化结构.以这种图案化突起结构作为微米尺寸所提供的微米级粗糙度为基础,设计了2种的简单的二次纳米结构的引入过程,最终实现了微米级阵列和纳米级粗糙度的复合.第一种方法借助银镜反应来实现纳米银结构的化学沉积,最终在PDMS阵列表面获得了致密的纳米银颗粒沉积层,并成功获得了表面接触角达166度的超疏水性质.第二种方法利用了聚电解质/二氧化硅粒子层层静电自组装的方法引入纳米结构,结果在仅仅进行了2个组装循环的条件下即可获得超疏水性质的表面复合结构.通过简单的实验设计试图提供一种基于水滴模板法的微纳复合超疏水结构的普适性制备方法.  相似文献   

5.
选择2种锥形纳米孔结构参数不同的阳极氧化铝(AAO)作为模板,利用注射压缩成型(ICM)技术将AAO模板中的纳米孔结构复制到聚丙烯(PP)表面上,在复制的PP表面上形成了致密且规则排列的锥形纳米柱阵列结构.该结构是一种仿生蝉翼纳米结构.在纳米柱结构的润湿状态能量比和顶部直径与中心间距之比(分别约为0.46和0.26)均明显较小的PP复制物表面,冷凝微水滴呈明亮的球状;在没有外力作用下,冷凝微水滴可通过频繁地合并、跳跃从该表面上移除,表面不断更新,即该表面具有明显的冷凝微水滴自移除(CMDSR)功能,使表面上覆盖的冷凝微水滴维持明显较低的量,而且冷凝微水滴维持较小的直径(不超过40 μm).该CMDSR功能是在未经低表面能修饰的情况下获得的.研究结果表明,利用ICM技术可快速、批量制备具有CMDSR功能的超疏水高分子材料.  相似文献   

6.
超疏水低粘着铜表面制备及其防覆冰性能   总被引:2,自引:0,他引:2  
用喷砂处理在铜片表面形成微米级丘陵状凹坑,再用表面氧化处理在铜片表面制备菊花花瓣状CuO纳米片.通过喷砂-表面氧化处理在铜片表面成功构建了微米-纳米复合结构,这种表面氟化后与水滴的接触角高达161°,滚动角低至1°,显示出优异的超疏水性和很低的粘着性.低温下,这种表面与水滴间的热量交换较小,水滴不易凝结,有效地提高了抗结霜性.抗结霜性良好的超疏水铜有望在热交换器或低温运行设备等领域获得应用,这种简便的超疏水铜表面的制备方法也给其它工程材料超疏水表面的工业化制备提供了一个思路.  相似文献   

7.
基于简单的液相法,以硫代硫酸钠和氯化铜为原料在铜片表面上构筑了具有微/纳米双尺寸粗糙度的硫化铜膜.用X射线衍射(XRD)仪、扫描电镜(SEM)、能量色散X射线(EDX)光谱仪及光学视频接触角仪对处理前后的铜表面进行了表征和分析.处理后的超亲水铜表面经硬脂酸修饰后具有超疏水效应,静态接触角高达161°,5μL水滴滚动角低至2.5°左右.超疏水性能归因于表面具有双尺寸粗糙度和低表面能的硬脂酸.该方法简单,无需复杂制备过程和苛刻设备,所得超疏水铜表面具有优异的不粘附性、长时间储存的稳定性和一定的耐摩擦性能.  相似文献   

8.
将二氧化硅纳米颗粒和硅树脂制成混合液,采用喷涂法(spray-coating)制备出了具备超疏水性的复合涂层.研究了二氧化硅、硅树脂不同含量配比对涂层疏水性能的影响,结果表明复合涂层的接触角随二氧化硅含量的增加而增加.在二氧化硅含量大于3%(质量分数)时,涂层显现超疏水性;当二氧化硅含量为3%(质量分数)、硅树脂含量为7%(质量分数)时,涂层与水的接触角达到151.6°,滚动角接近0°.通过扫描电子显微镜(SEM)观察涂层表面的微观结构,发现超疏水性的涂层具备微-纳复合阶层结构,类球状突起粒径在5μm左右,类球状突起上分布纳米团聚颗粒,直径约为50 nm.这种类似荷叶表面的微(纳复合阶层结构,结合硅树脂的低表面能,使得复合涂层具备了超疏水性能.  相似文献   

9.
拉伸微模塑制备低密度聚乙烯超疏水表面   总被引:1,自引:0,他引:1  
以新鲜荷叶为原始模板制备聚二甲基硅氧烷(PDMS)软模板,并用该软模板在真空下热压得低密度聚乙烯(LDPE),冷却剥离得到LDPE超疏水薄膜.场发射扫描电镜(FE-SEM)显示其表面由细长乳突(长约30 μm)构成,接触角为154°±3.5°,水滴极易滚落,而常压下热压得到的薄膜表面乳突则短而粗(长约8~10μm),接触角仅137°±2.7°,短粗的乳突高度接近模板微坑的深度,证明细长乳突是在微模塑脱模时拉伸形成的.  相似文献   

10.
报道了一种以自组装单层聚苯乙烯纳米微球阵列为模板, 通过真空热蒸镀银纳米粒子高效制备大面积银碗阵列结构的方法. 测试结果表明, 制得的银碗阵列结构为微纳米复合分级结构, 银碗由平均粒径为10 nm的银纳米粒子组成. 紫外-可见吸收光谱测试结果表明, 银碗阵列结构表面具有银纳米粒子的局域表面等离子体共振吸收峰. 将荧光分子N,N'-二正丁基喹吖啶酮(DBQA)分别蒸镀到普通银膜和银碗阵列结构表面并测试了荧光光谱. 结果表明, 在银碗阵列结构表面的荧光分子强度得到了显著增强, 说明制备的银碗阵列结构是优良的荧光增强基底.  相似文献   

11.
溶胶凝胶法制备仿生超疏水性薄膜   总被引:15,自引:0,他引:15  
郭志光  周峰  刘维民 《化学学报》2006,64(8):761-766
通过溶胶-凝胶(Sol-Gel)法和自组装(Self-assembled)制备了具有超疏水性的薄膜, 水滴在该薄膜上的平衡静态接触角为155°~157°, 滑动角为3°~5°. 通过扫描电子显微镜(SEM)观察薄膜微观表面, 发现该薄膜表面分布了双层结构(Binary structure)的微纳米粗糙度的微凸体, 上表层微米微凸体的平均直径为0. 2 μm, 下表层纳米微凸体的平均直径约为13 nm, 其分布与荷叶表面的结构极其相似. 用X射线光电子能谱(XPS)对薄膜表面元素进行了成分分析, 结果表明, 其表面存在大量的F, Cl等元素, 它能显著降低薄膜表面的表面能. 薄膜超疏水性的原因可能是, 通过硅片经溶胶粒子表面制备的薄膜具有合适的表面粗糙度, 再经过全氟辛基三氯甲硅烷(FOTMS)化学修饰后, 薄膜表面能进一步降低, 这两个条件的有机结合就使得薄膜产生了超疏水性.  相似文献   

12.
超疏水材料以其独特的润湿性在日常生活和工业领域都展示出广阔的应用前景,但其表面的微纳米结构和低表面能物质易受到机械摩擦或化学侵蚀而失去超疏水性。当前诸多报道都采用微纳结构设计和表面优化来延长超疏水材料的耐久性,以期提升其商业价值。本文先从表面浸润模型出发,包括经典理论、亚稳态理论和接触线理论,梳理了超疏水理论模型的发展脉络,阐明这些理论在超疏水耐久性设计上发挥的关键指导作用。接着对微纳米结构设计、胶黏+涂装、铠装防护、自修复和气膜修补等延长超疏水耐久性的制备策略进行了总结,并对不同制备策略各自的优势和局限性进行简要评述。本综述还从机械稳定性和化学稳定性两方面汇总了超疏水耐久性的快速评价手段,讨论了提升超疏水表面耐久性所遇到的问题,并展望了超疏水材料的发展前景,以期助力长效超疏水材料的研发和应用。  相似文献   

13.
基于自组装技术制备了3种不同粒径的聚苯乙烯微球阵列,并翻制了与微球阵列互补的软模板.基于室温无外压的转移印刷技术制备了聚甲基丙烯酸甲酯半球形微纳阵列,然后基于原位光还原技术在聚甲基丙烯酸甲酯半球表面制备Ag纳米颗粒,构筑了拉曼增强的半球状多级Ag基底.转移印刷技术的关键是利用软模板自身的低表面能和表面羟基化的图案化材料与亲水基底界面间的氢键作用力.  相似文献   

14.
三角紫叶酢浆草叶面有很好的超疏水性,水滴在其表面的接触角约为150°,滚动角约为15°。研究发现,在三角紫叶酢浆草的叶面,分布有微纳米二元复合阶层结构的"星型"微凸体,微凸体之间有大量凹槽和空隙,复合阶层结构表面能吸附一层空气膜,液滴与其表面的接触是液、固、气的复合接触。此外,植物的叶面有低表面能的蜡状物,微纳米级的复合阶层结构及其表面的低表面能物质的协同效应使其表面显示出优异的超疏水性能。该研究有望为仿生超疏水材料的制备提供有益的启示与借鉴。  相似文献   

15.
超疏水性表面的制备及应用进展   总被引:1,自引:0,他引:1  
侯磊鑫  方莉 《化学通报》2016,79(10):897-904
近年来,受荷叶、水黾腿、壁虎脚等天然超疏水生物表面特性的启发,研究者们进行了大量仿生超疏水表面材料的制备及应用研究。超疏水性表面因其特殊的微纳分层结构,具有自清洁、防覆冰、防腐蚀、减阻等优异性能。本文阐述了表面润湿、疏水的基本机理,以及超疏水表面研究的理论基础,对超疏水表面制备的最新研究进展进行了综述,并揭示了研究中存在的问题。最后,介绍了超疏水表面在涂料、织物、防腐、抗菌及防雾等领域中的应用,展望了其未来的研究方向和前景。  相似文献   

16.
借助于多巴胺在Fe3O4纳米颗粒表面自聚合形成聚多巴胺薄膜制备出Fe3O4/聚多巴胺(Fe3O4/PD)复合纳米颗粒,利用扫描电子显微镜、透射电子显微镜、X射线衍射仪对样品的形貌、结构及成分进行分析.所制备的颗粒经1H,1H,2H,2H-全氟癸基三氯硅烷化学修饰后表现出超疏水性.有趣的是,超疏水性的Fe3O4/PD纳米颗粒包裹在水滴表面能形成磁性液珠,该液珠(4μL)在亲水性玻璃表面上的接触角高达164°、滚动角为8°.这些磁性液珠具有良好的机械稳定性和强度,同时研究了外部磁场驱动液珠在平面、曲面、油相中运动.结果表明,磁性液珠能够有效应用于操作微流体装置中的液体输送.水滴在Fe3O4/PD纳米颗粒构成表面的接触角超过150°,而油滴则接近0°,因此,在磁场存在下,这些颗粒能用于吸收油水混合物中的油滴而实现油水分离.此外,回收的Fe3O4/PD纳米颗粒保持着超疏水性且能再次利用.  相似文献   

17.
以砂纸为模板制作聚合物超疏水表面   总被引:5,自引:2,他引:5  
报道了一种聚合物材料超疏水表面的简便制备方法. 以不同型号的金相砂纸为模板, 通过浇注成型或热压成型技术, 在聚合物表面形成不同粗糙度的结构. 接触角实验结果证明, 聚合物表面与水的接触角随着所用砂纸模板粗糙度的增加而加大, 其中粒度号为W7和W5砂纸制作的表面与水的接触角可超过150°, 显示出超疏水性质. 多种聚合物使用砂纸为模均可制备不同粗糙度及超疏水的表面, 本征接触角对复制表面浸润性的影响从Wenzel态到Cassie态而变小. 扫描电镜结果表明, 不规则形状的砂纸磨料颗粒构成了超疏水所需要的微纳米结构的模板.  相似文献   

18.
基于表面分子自组装和光催化转印技术,在TiO2膜层表面获得超亲/超疏水阵列微图案模板,结合电化学沉积技术,成功制备了微图案化钙磷盐膜(CaP)层.扫描电子显微镜(SEM)和电子探针分析(EPMA)结果表明,通过超亲/超疏水阵列微图案模板可构筑高空间分辨的微图案化钙磷盐膜层.微图案化钙磷盐膜层的体外MG-63细胞培养证实,细胞对钙磷盐膜层微单元有强烈的选择性粘附作用,从而可望控制细胞在微单元中的贴壁生长,实现高通量评价细胞行为.  相似文献   

19.
超疏水-超疏油材料在防污、防水、防油等领域有广泛的应用前景而引起人们极度关注。本文用全氟辛酸溶液浸泡锌粉制得超疏水-超疏油锌粉,用聚乙烯醇胶将超疏水-超疏油锌粉粘合、固定到玻璃、木头、塑料、不锈钢、纸片、石头表面后可制得超疏水-超疏油表面,水滴、油滴在其表面的接触角均超过150°。锌粉与全氟辛酸反应后生成Zn[CF_3(CF_2)_6COO]_2,氟代长链烷基的低表面能化学组成与微纳米粗糙结构的协调作用使其表现出超疏水、超疏油性能。相关研究有望为超双疏材料的设计、制备及其在自清洁、防水防油及抗污等领域的应用提供借鉴。  相似文献   

20.
静电纺丝制备超疏水TiO2纳米纤维网膜   总被引:4,自引:1,他引:3  
采用静电纺丝技术构筑粗糙表面, 再使用廉价的低表面能物质硅油在煅烧过程中进行同步修饰, 制备出接触角大于150°, 滚动角小于5°的TiO2超疏水表面. 该超疏水表面具有由TiO2纳米纤维和微米尺寸颗粒状硅油高温分解产物织构而成的纳米纤维网膜结构, 这种特殊的微纳米复合粗糙结构和疏水性硅油分解产物的修饰作用导致TiO2纳米纤维网膜的超疏水性. 这种超疏水的TiO2材料为超疏水材料在防水织物、无损失液体运输和微流体等领域的应用提供了新的研究视野.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号