首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes of salicylidene-N-cyano-acetohydrazone H2L1 and 2-hydroxy-l-naphthylidene-N-cyanoacetohydrazone H2L2 have been prepared in ethanolic solution and characterized by analytical, spectral, magnetic susceptibility, molar conductivity and TGA measurements. The analytical data show that all the complexes derived from H2L1 and H2L2 are formed in molar ratios 1M:2L, except the complexes of Mn(II), Co(II) and Cu(II) acetates of H2L2 and the complexes of Mn(II), Co(II) and Ni(II) acetates and CuCl2 of H2L1 are formed in 1:1 molar ratios. The conductance data show that all metal complexes are non-electrolytes. Electronic absorption spectra and magnetic susceptibility measurements proved that the prepared complexes have octahedral configuration except [Co(HL2)OAc] which has tetrahedral structure. The ligand field parameters were calculated for the Co(II) and Ni(II) complexes and the data show that the covalent character of the metal ligand sigma-bond is low. The ESR parameters of the Cu(II) complexes at room temperature were calculated. Thermal TGA for some solid complexes are reported.  相似文献   

2.
Two series of new binuclear complexes with Schiff base ligands, H(4)L(a) or H(2)L(b), derived from the reaction of 4,6-diacetylresorcinol and ethylenediamine, in the molar ratio 1:1 and 1:2 have been prepared, respectively. The two ligands react with Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Cr(III) and Fe(III)-nitrates to get binuclear complexes. The ligands were characterized by elemental analysis, IR, UV-vis, (1)H NMR and mass spectra. The complexes were synthesized by direct and template methods. Different types of products were obtained for the same ligand and metal salts according to the method of preparation. The H(4)L(a) ligand behaves as a macrocyclic tetrabasic with two N(2)O(2) sits, while the H(2)L(b) ligand behaves as a dibasic with two N(2)O sites. The H(4)L(a) ligand is a compartmental ligand which hosts the two metal ions at the centers of two cis-N(2)O(2) sites, while the metal complexes of H(2)L(b) ligand are binuclear, where the ligand hosts two metal ions at the centers of two N(2)O sites. In both cases, deprotonation of the hydrogen atoms of the phenolic OH groups occur except in the case of the Ni(II), Fe(III) and Cr(III) complexes. Electronic spectra and magnetic moments of the complexes indicate that the geometries of the metal centers are either octahedral or tetrahedral. The structures are consistent with the IR, UV-vis, ESR, (1)H NMR, mass spectra, and thermal gravimetric analysis (TGA/DTA) as well as conductivity and magnetic moment measurements.  相似文献   

3.
Template condensation of 3,5-di-tert-butyl-2-hydroxybenzaldehyde S-methylisothiosemicarbazone with pentane-2,4-dione and triethyl orthoformate at elevated temperatures resulted in metal complexes of the type M(II)L, where M = Ni and Cu and H(2)L = a novel tetradentate ligand. These complexes are relevant to the active site of the copper enzymes galactose oxidase and glyoxal oxidase. Demetalation of Ni(II)L with gaseous hydrogen chloride in chloroform afforded the metal-free ligand H(2)L. Then by the reaction of H(2)L with Zn(CH(3)COO)(2)·2H(2)O in a 1:1 molar ratio in 1:2 chloroform/methanol, the complex Zn(II)L(CH(3)OH) was prepared. The three metal complexes and the prepared ligand were characterized by spectroscopic methods (IR, UV-vis, and NMR spectroscopy), X-ray crystallography, and DFT calculations. Electrochemically generated one-electron oxidized metal complexes [NiL](+), [CuL](+), and [ZnL(CH(3)OH)](+) and the metal-free ligand cation radical [H(2)L](+?) were studied by EPR/UV-vis-NIR and DFT calculations. These studies demonstrated the interaction between the metal ion and the phenoxyl radical.  相似文献   

4.
Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO2(II) complexes with piroxicam (Pir) drug (H2L1) and dl-alanine (Ala) (HL2) and also the binary UO2(II) complex with Pir were studied. The structures of the complexes were elucidated using elemental, IR, molar conductance, magnetic moment, diffused reflectance and thermal analyses. The UO2(II) binary complex was isolated in 1:2 ratio with the formula [UO2(H2L)2](NO3)2. The ternary complexes were isolated in 1:1:1 (M:H2L1:L2) ratios. The solid complexes were isolated in the general formulae [M(H2L)(L2)(Cl)n(H2O)m].yH2O (M=Fe(III) (n=2, m=0, y=1), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=0)); [M(H2L)(L2)](X)z.yH2O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO2(II) (X=NO3, z=1, y=2)). Pir behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data show that the complexes have octahedral geometry except Cu(II) and Zn(II) complexes have tetrahedral structures. The thermal decomposition of the complexes was discussed in relation to structure, and the thermodynamic parameters of the decomposition stages were evaluated.  相似文献   

5.
Metal complexes of Schiff base derived from condensation of o-vanilin (3-methoxysalicylaldehyde) and sulfametrole [N(1)-(4-methoxy-1,2,5-thiadiazole-3-yl)sulfanilamide] (H2L) are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA). From the elemental analyses data, the complexes were proposed to have the general formulae [M2X3(HL)(H2O)5].yH2O (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, y=0-3); [Fe2Cl5(HL)(H2O)3].2H2O; [(FeSO4)2(H2L)(H2O)4] and [(UO2)2(NO3)3(HL)(H2O)].2H2O. The molar conductance data reveal that all the metal chelates were non-electrolytes. The IR spectra show that, H2L is coordinated to the metal ions in a tetradentate manner with ON and NO donor sites of the azomethine-N, phenolic-OH, enolic sulphonamide-OH and thiadiazole-N. From the magnetic and solid reflectance spectra, it is found that the geometrical structures of these complexes are octahedral. The thermal behaviour of these chelates shows that the hydrated complexes losses water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as, E*, DeltaH*, DeltaS* and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The synthesized ligand, in comparison to their metal complexes also were screened for their antibacterial activity against bacterial species, Escherichia coli, Salmonella typhi, Bacillus subtillus, Staphylococcus aureus and Fungi (Aspergillus terreus and Aspergillus flavus). The activity data show that the metal complexes to be more potent/antimicrobial than the parent Shciff base ligand against one or more microbial species.  相似文献   

6.
Wu G  Wang XF  Okamura TA  Sun WY  Ueyama N 《Inorganic chemistry》2006,45(21):8523-8532
Seven coordination compounds, [Zn(L3)Cl2] . MeOH . H2O (1), [Mn(L3)2Cl2] . 0.5EtOH . 0.5H2O (2), [Cu3(L2)2Cl6] . 2DMF (3), [Cu3(L2)2Br6] . 4MeOH (4), [Hg2(L4)Cl4] (5), [Hg2(L4)Br4] (6), and [Hg3(L4)2I6] . H2O (7), were synthesized by the reactions of ligands 1,3,5-tris(3-pyridylmethoxyl)benzene (L3), 1,3,5-tris(2-pyridylmethoxyl)benzene (L2), and 1,3,5-tris(4-pyridylmethoxyl)benzene (L4) with the corresponding metal halides. All the structures were established by single-crystal X-ray diffraction analysis. In complexes 1 and 2, L3 acts as a bidentate ligand using two of three pyridyl arms to link two metal atoms to result in two different 1D chain structures. In complexes 3 and 4, each L2 serves as tridentate ligand and connects three Cu(II) atoms to form a 2D network structure. Complexes 5 and 6 have the same framework structure, and L4 acts as a three-connecting ligand to connect Hg(II) atoms to generate a 3D 4-fold interpenetrated framework, while the structure of complex 7 is an infinite 1D chain. The results indicate that the flexible ligands can adopt different conformations and thus can form complexes with varied structures. In addition, the coordination geometry of the metal atom and the species of the halide were found to have great impact on the structure of the complexes. The photoluminescence properties of the complexes were investigated, and the Zn(II), Mn(II) and Hg(II) complexes showed blue emissions in solid state at room temperature.  相似文献   

7.
Yoshino T  Murakami S  Kagawa M 《Talanta》1974,21(3):199-209
Potentiometric and spectrophotometric studies on Semi-Methylthymol Blue (SMTB or H(4)L) have been performed. The acid-base and Co(II), Ni(II), Cu(II) and Zn(II)-ligand reaction stoichiometries were determined, and the formation constants of the corresponding proton and metal complexes, and the molar absorptivities were calculated. Evidence was found for the formation of 1:1 Co(II), Ni(II) and Cu(II) complexes, and 1:1 and 1:2 Zn(II) complexes. Cu(II) formed the hydroxo-complex, Cu(OH)L(3-), but no hydroxo-complexes of the other metal ions were observed. Suggestions are made concerning the probable structure of the complexes.  相似文献   

8.
Novel hexachlorocyclodiphosph(V)azane of sulfaguanidine, H(4)L, l,3-[N'-amidino-sulfanilamide]-2,2,2,4,4,4-hexachlorocyclodiphosph(V)azane was prepared and its coordination behaviour towards the transition metal ions Fe(III), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO(2)(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV-vis, (1)H NMR, mass spectra, reflectance, magnetic susceptibility measurements and thermogravimetric analysis (TGA). The hyperfine interactions in the isolated complex compounds were studied using 14.4keV gamma-ray from radioactive (57)Co (M?ssbauer spectroscopy). The data show that the ligand are coordinated to the metal ions via the sulfonamide O and deprotonated NH atoms in an octahedral manner. The H(4)L ligand forms complexes of the general formulae [(MX(z))(2)(H(2)L)H(2)O)(n)] and [(FeSO(4))(2) (H(4)L) (H(2)O)(4)], where X=NO(3) in case of UO(2)(II) and Cl in case of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II). The molar conductance data show that the complexes are non-electrolytes. The thermal behaviour of the complexes was studied and different thermodynamic parameters were calculated using Coats-Redfern method. Most of the prepared complexes showed high bactericidal activity and some of the complexes show more activity compared with the ligand and standards.  相似文献   

9.
The copper(II), nickel(II), and zinc(II) complexes of the acyclic Schiff base H(2)L(A), obtained by [1 + 2] condensation of 1,2-ethanediamine,N-(2-aminoethyl)-N-methyl with 3-ethoxy-2-hydroxybenzaldehyde, and of H(2)L(B), the reduced derivative of H(2)L(A), were prepared and their properties studied by IR, NMR and SEM-EDS. In these complexes, the metal ion is always located in the coordination chamber of the ligand delimited by two phenol oxygens and nitrogen atoms (either aminic or iminic). The coordination behaviour of H(2)L(A) and H(2)L(B) towards H(+), Cu(2+), Ni(2+) and Zn(2+) in aqueous solution at 298 K and mu = 0.1 mol dm(-3) (Na)ClO(4) was also studied by potentiometric, NMR and UV-VIS measurements. In particular, potentiometric equilibrium studies indicate that H(2)L(A) is not stable enough to have a pH range in which it is the sole species in aqueous solution. In such a solution, the Schiff base forms over a limited pH range, between 6 and 10, with a maximum formation percentage at pH approximately 9. In addition, the involvement of imine nitrogens in the complexes markedly stabilises the azomethylene linkage, so that the metal complexes of H(2)L(A), particularly those of copper(II), are the species largely prevailing in solutions with pH >3.5. The stability constants of the complexes formed by metal ions with H(2)L(A) and H(2)L(B) follow the order Cu(2+) > Ni(2+) > Zn(2+); distribution plots show that copper(II) gives complexes more stable with H(2)L(A), whereas Ni(2+) and Zn(2+) prefer the reduced ligand, H(2)L(B).  相似文献   

10.
A new series of Fe (III), Co (II), Zn (II), Y (III), Zr (IV) and La (III) complexes derived from the novel ligand 4-(4-Isopropyl phenyl)-2-oxo-6-phenyl 1,2-dihyropyridine-3-carbonitrile (L) were synthesized and characterized. The mode of bonding of L and geometrical structures of their metal complexes were elucidated by different micro analytical and spectral methods (FT-IR,UV–visible,1H NMR and Mass spectra) as well as thermal analysis (TG and DTG), and differential scanning calorimetry (DSC). The results of analytical and spectroscopic equipments revealed that L acts as bidentate through nitrogen of carbonitrile group and oxygen of keto group. The conductivity measurement results deduced that these chelates are electrolyte with 1:2 for Co (II), Zn (II), and Zr (IV) and 1:3 for Fe (III), Y (III), and La (III). The results of magnetic moment measurements supported paramagnetic for some complexes (Fe (III), Co (II) and Cu (II)) and diamagnetic phenomena for the other complexes (Y (III), Zr (IV) and La (III)). Thermodynamic parameters such as energy of activation E*, entropy ΔS*, enthalpy ΔH* and Gibss free energy ΔG* were calculated using Coats-Redfern and Horowitz-Metzeger methods at n = 1 or n#1. Some results of bioactivity tests for ligands and their metal complexes were recorded against Gram-positive, Gram-negative bacteria and antifungal. The complexes showed significant more than free ligand.  相似文献   

11.
We have prepared and characterized a new phenol-based compartmental ligand (H(2)L) incorporating 1,4,7-triazacyclononane ([9]aneN(3)), and we have investigated its coordination behavior with Cu(II), Zn(II), Cd(II), and Pb(II). The protonation constants of the ligand and the thermodynamic stabilities of the 1:1 and 2:1 (metal/ligand) complexes with these metal ions have been investigated by means of potentiometric measurements in aqueous solutions. The mononuclear [M(L)] complexes show remarkably high stability suggesting that, along with the large number of nitrogen donors available for metal binding, deprotonated phenolic functions are also involved in binding the metal ion. The mononuclear complexes [M(L)] show a marked tendency to add a second metal ion to afford binuclear species. The formation of complexes [M(2)(H(2)L)](4+) occurs at neutral or slightly acidic pH and is generally followed by metal-assisted deprotonation of the phenolic groups to give [M(2)(HL)](3+) and [M(2)(L)](2+) in weakly basic solutions. The complexation properties of H(2)L have also been investigated in the solid state. Crystals suitable for X-ray structural analysis were obtained for the binuclear complexes [Cu(2)(L)](BF(4))(2).(1)/(2)MeCN (1), [Zn(2)(HL)](ClO(4))(3).(1)/(2)MeCN (2), and [Pb(2)(L)](ClO(4))(2).2MeCN (4). In 1 and 2, the phenolate O-donors do not bridge the two metal centers, which are, therefore, segregated each within an N(5)O-donor compartment. However, in the case of the binuclear complex [Pb(2)(L)](ClO(4))(2).2MeCN (4), the two Pb(II) centers are bridged by the phenolate oxygen atoms with each metal ion sited within an N(5)O(2)-donor compartment of L(2)(-), with a Pb.Pb distance of 3.9427(5) A.  相似文献   

12.
An ewacylpyrazolone Schiff base and its metal complexes were synthesized. The electrochemical behaviour of complexes was studied. In non-aqueous solvent, the new Schiff base 1-phenyl-3-methyl-4-(2-thenoyl)-5-pyrazolone-2-alanine (HL) was synthesized by the reaction of 2-alanine with 1-phenyl-3-methyl-4-(2-thenoyl)-5-pyrazolone and its complexes UO2(II), Cu(II), Co(II) and Fe(II) were obtained from refluxing a solution of Schiff base and metal nitrate. The polarographic wave of Cu(II) complex was determined at 1.24V(vs.SCE) in the medium of HAc-NaAc (PH=4.6). On the basis of elemental analysis and molar conductance, the general formula of the complexes, UO2L2?H2O,CuL2?2H2O,CoL2?2H2O and FeL2?2H2O, were given. They were characterized by IR, UV-visible, 1H NMR, 13CNMR, thermal analyses and magnetic moments. The results show that the metal ions except UO2 2+ exhibit six coordination in the complexes. The peak current is produced by the reduction of Cu2+ in the copper complex, and the number of electron transfer is 1 at electrode reaction.  相似文献   

13.
Four novel metal(II) complexes, Ni(L)2, Co(L)2, Cu(L)2, and Zn(L)2 (L = 5-(2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)hydrazono)-1,3-diethyl-2-thioxo-dihydropyrimidine-4,6(1H,5H)-dione), were synthesized using the procedure of diazotization, coupling and metallization. Their structures were identified by elemental analyses, 1H NMR, ESI-MS and FT-IR spectra. The effect of different central metal(II) ions on absorption bands of the metal(II) complexes was researched. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). Furthermore, the thermodynamic parameters, such as activation energy (E*), enthalpy (?H*), entropy (?S*) and free energy of the decomposition (?G*) are calculated from the TG curves applying Coats–Redfern method. The results show that the metal(II) complexes have suitable electronic absorption spectra with blue-violet light absorption at about 350–450 nm, high thermal stability with sharp thermal decomposition thresholds.  相似文献   

14.
A new bis-tetradentate acyclic amine ligand L(Et) has been synthesized from 4,6-bis(aminomethyl)-2-phenylpyrimidine and 2-vinylpyridine. Dinuclear complexes, Mn(II)(2)L(Et)(MeCN)(H(2)O)(3)(ClO(4))(4) (1), Fe(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (2), Co(II)(2)L(Et)(H(2)O)(3)(MeCN)(2)(BF(4))(4) (3), Ni(II)(2)L(Et)(H(2)O)(4)(BF(4))(4) (4), Ni(II)(2)L(Et)(H(2)O)(4)(ClO(4))(4)·8H(2)O (4'), Cu(II)(2)L(Et)(BF(4))(4)·MeCN (5), Zn(II)(2)L(Et)(BF(4))(2)(BF(4))(2)·?MeCN (6), were obtained from 1 : 2 reactions of L(Et) and the appropriate metal salts in MeCN, whereas in MeOH tetranuclear complexes, Mn(II)(4)(L(Et))(2)(OH)(4)(ClO(4))(4) (7), Fe(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·5/2H(2)O (8), Co(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (9), Ni(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·4H(2)O (10), Cu(II)(4)(L(Et))(2)(F)(4)(BF(4))(4)·3H(2)O (11) and Zn(II)(4)(L(Et))(2)(F)(4)(BF(4))(4) (12), result. Six complexes have been structurally characterized: in all cases each L(Et) is bis-tetradentate and provides a pyrimidine bridge between two metal centres. As originally anticipated, complexes 1, 4' and 6 are dinuclear, while 9, 10 and 12 are revealed to be tetranuclear, with two M(2)(L(Et))(4+) moieties bridged by two pairs of fluoride anions. Weak to moderate antiferromagnetic coupling between the metal centres is a feature of complexes 2, 3, 4, 8, 9 and 10. The dinuclear complexes 1-6 undergo multiple, mostly irreversible, redox processes. However, the pyrimidine-based dicopper(II) complex 5 undergoes a two electron quasi-reversible reduction, Cu(II)(2)→ Cu(I)(2), and this occurs at a more positive potential [E(m) = +0.11 V (E(pc) = -0.03 and E(pa) = +0.26 V) vs. 0.01 M AgNO(3)/Ag] than for either of the dicopper(II) complexes of the analogous pyrazine-based ligands.  相似文献   

15.
A new series of transition metal complexes of Cu(II), Ni(II), Zn(II) and VO(IV), were synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and acetylacetone. The structural features were arrived from their elemental analyses, magnetic susceptibility, molar conductance, Mass, IR, UV-Vis., 1H NMR and ESR spectral studies. The data show that the complexes have composition of [ML]X type. The UV-Vis., magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except for VO(IV) complex which has square-pyramidal geometry. The redox behavior of copper and vanadyl complexes were studied by cyclic voltammetry. The antimicrobial screening tests were also recorded and gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that the copper and nickel complexes cleave DNA through redox chemistry, whereas other complexes are not effective.  相似文献   

16.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) have been synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and o-phenylenediamine. Structural features were obtained from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that these complexes have composition of ML type. The UV-Vis, magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The redox behaviour of copper and vanadyl complexes was studied by cyclic voltammetry. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that Cu, Ni and Co complexes cleave DNA through redox chemistry whereas other complexes are not effective.  相似文献   

17.
The synthesis and characterization of Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Pd(II) and UO2(II) chelates of 1-(2-thiazolylazo)-2-naphthalenol (TAN) were reported. The dissociation constants of the ligand and the stability constants of the metal complexes were calculated pH-metrically at 25 degrees C and 0.1 M ionic strength. The solid complexes were characterized by elemental and thermal analyses, molar conductance, IR, magnetic and diffuse reflectance spectra. The complexes were found to have the formulae [M(L)2] for M = Mn(II), Co(II), Ni(II), Zn(II) and Cd(II); [M(L)X].nH2O for M = Cu(II) (X = AcO, n = 3), Pd(II) (X = Cl, n = 0) and UO2(II) (X = NO3, n = 0), and [Fe(L)Cl2(H2O)].2H2O. The molar conductance data reveal that the chelates are non-electrolytes. IR spectra show that the ligand is coordinated to the metal ions in a terdentate manner with ONN donor sites of the naphthyl OH, azo N and thiazole N. An octahedral structure is proposed for Mn(II), Fe(III), Co(II), Ni(II), Zn(II), Cd(II) and UO2(II) complexes and a square planar structure for Cu(II) and Pd(II) complexes. The thermal behaviour of these chelates shows that water molecules (coordinated and hydrated) and anions are removed in two successive steps followed immediately by decomposition of the ligand molecule in the subsequent steps. The relative thermal stability of the chelates is evaluated. The final decomposition products are found to be the corresponding metal oxides. The thermodynamic activation parameters, such as E*, delta H*, delta S* and delta G* are calculated from the TG curves.  相似文献   

18.
Wan L  Zhang C  Xing Y  Li Z  Xing N  Wan L  Shan H 《Inorganic chemistry》2012,51(12):6517-6528
A series of novel bis-pyrazole/pyridine complexes, [Zn(2)(HL(1))(2)(μ(2)-SO(4))](2)·EtOH·H(2)O (1), [Co(2)(HL(1))(2)(μ(2)-SO(4))](2)·2DMF·6H(2)O (2), [Zn(4)(HL(1))(4)(μ(4)-SO(4))][OH](2) (3), [Zn(2)(HL(2))(2)(μ(2)-SO(4))]·2H(2)O (4), [Zn(H(2)L(2))(H(2)O)(2)](SO(4))·0.87H(2)O (5) (H(2)L(1) = 2,6-di-(5-phenyl-1H-pyrazol-3-yl)pyridine, H(2)L(2) = 2,6-di-(5-methyl-1H-pyrazol-3-yl)pyridine), were synthesized hydrothermally from the self-assembly of Zn(II) or Co(II) with different types of bipyrazolyl/pyridine derivative ligands. All the complexes were characterized by elemental analysis, IR and UV-vis spectroscopy, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction. Structural analyses revealed that metal atoms (Zn and Co) in complexes 1-5 are five-coordination modes, forming slightly distorted trigonal bipyramidal geometries. In complexes 1-3, H(2)L(1) ligand connected the two metal centers via the tetradentate fashion, and the same form of connection was found in complex 4 with H(2)L(2) ligand. While in complex 5, H(2)L(2) only connected with one metal center via the tridentate fashion, which was different from those in complexes 1-4. Additionally, there are abundant hydrogen bonding interactions in complexes 1-4. Interestingly, for hydrogen bonding connecting fashions being different, the molecules for the complexes 1 and 4 are held together by the hydrogen bond to form a 1D supramolecular structure, whereas complexes 2 and 3 are a hydrogen bonded dimer. In addition, quantum chemical calculations for 1, 3, and 4, thermal behaviors and photoluminescent properties for 1 and 3-5 were performed and discussed in detail. In the mean time, we found that these complexes had potential catalytic activity for the oxidation reaction of cyclohexane.  相似文献   

19.
The reaction of FeCl(3) with uracil (H(2)L(1)), citrazinic acid (H(2)L(6)), 5-(phenylazo)citrazinic acid (H(2)L(7)), 5-(m-hydroxyphenylazo)citrazinic acid (H(2)L(8)) and 5-(m-nitrophenylazo)citrazinic acid (H(2)L(9)) leads to the formation of complexes with the empirical formula Fe(HL)(3).nH(2)O (n=1-3). All of the prepared complexes have octahedral complexation geometry where the azo group is not the reactive site for complexation. Thiouracil (H(2)L(2)) and the 5-(substituted phenylazo)thiouracil (H(2)L(3)-H(2)L(5)) ligands are bidentates on complexation with Co(II), Ni(II) and Cu(II). The complexes have been characterized by elemental analyses, IR, electronic spectra, magnetic susceptibility, DTA, electron spin resonance (copper complexes) and M?ssbauer spectra (iron complexes). The coordination bond lengths between the metal ion and the active centers for complexation were calculated.  相似文献   

20.
The Schiff bases of N(2)O(2) dibasic ligands, H(2)La and H(2)Lb are prepared by the condensation of ethylenediamine (a) and trimethylenediamine (b) with 6-formyl-7-hydroxy-5-methoxy-2-methylbenzopyran-4-one. Also tetra basic ligands, H(4)La and H(4)Lb are prepared by the condensation of aliphatic amines (a) and (b) with 6-formyl-5,7-dihydroxy-2-methylbenzopyran-4-one. New complexes of H(4)La and H(4)Lb with metal ions Mn(II), Ni(II) and Cu(II) are synthesized, in addition Mn(II) complexes with ligands H(2)La and H(2)Lb are also synthesized. Elemental and thermal analyses, infrared, ultraviolet-visible as well as conductivity and magnetic susceptibility measurements are used to elucidate the structure of the newly prepared metal complexes. The structures of copper(II) complexes are also assigned based upon ESR spectra study. All the complexes separated with the stoichiometric ratio (1:1) (M:L) except Mn-H(4)La and Mn-H(4)Lb with (2:1) (M:L) molar ratio. In metal chelates of the type 1:1 (M:L), the Schiff bases behave as a dinegative N(2)O(2) tetradentate ligands. Moreover in 2:1 (M:L) complexes, the Schiff base molecules act as mono negative bidentate ligand and binuclear complex is then formed. The Schiff bases were assayed by the disc diffusion method for antibacterial activity against Staphylococcus aureus and Escherichia coli. The antifungal activity of the Schiff bases was also evaluated against the fungi Aspergillus flavus and Candida albicans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号