首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The motivation for this paper is to solve a model based on the dynamics of electrons in a plasma using a simplified Boltzmann equation. Such problems have arisen in active plasma resonance spectroscopy, which is used for plasma diagnostic techniques; see Braithwaite and Franklin (2009) [1]. We propose a modified iterative splitting approach to solve the Boltzmann equations as a system of integro-differential equations. To enable solution by fast and iterative computations, we first transform the integro-differential equations into second order differential equations. Second, we split each second order differential equations into two first order differential equations via a splitting approach. We carry out an error analysis of the higher order iterative approach. Numerical experiments with a simplified Boltzmann equation will be discussed, along with the benefits of computing with this splitting approach.  相似文献   

2.
有效求解连续的Sylvester矩阵方程对于科学和工程计算有着重要的应用价值,因此该文提出了一种可行的分裂迭代算法.该算法的核心思想是外迭代将连续Sylvester矩阵方程的系数矩阵分裂为对称矩阵和反对称矩阵,内迭代求解复对称矩阵方程.相较于传统的分裂算法,该文所提出的分裂迭代算法有效地避免了最优迭代参数的选取,并利用了复对称方程组高效求解的特点,进而提高了算法的易实现性、易操作性.此外,从理论层面进一步证明了该分裂迭代算法的收敛性.最后,通过数值算例表明分裂迭代算法具有良好的收敛性和鲁棒性,同时也证实了分裂迭代算法的收敛性很大程度依赖于内迭代格式的选取.  相似文献   

3.
Pham Loi Vu 《Acta Appl Math》1997,49(2):107-149
The paper deals with the initial-value problems for the Korteweg–de Vries (KdV) equations on the half-line and on the whole-line for complex-valued measurable and exponentially decreasing potentials. The time evolution equation for the reflection coefficient is derived and then a one-to-one correspondence between the scattering data and the solution of the KdV equation is shown. Families of exact solutions of the KdV equation are represented for the class of reflection-free potentials, in which the inverse scattering problem associated with the KdV equation can be solved exactly. Some helpful examples of soliton solutions of the KdV equation are provided.  相似文献   

4.
A new iterative method is applied to study the solutions of the Korteweg-de Vries (KdV) equation. The method is a modified form of the well known Adomian decomposition method (ADM), where it avoids the difficulty of computing the Adomian polynomials. We prove the existence of a unique solution of the KdV equation. And then, we show that the new method generates an infinite series which converges uniformly to the exact solution of the problem. Soliton solutions of the KdV equation are obtained by the new method. Numerical calculations indicate the effectiveness of the new method where the obtained results are very accurate and better than the ones obtained by the ADM.  相似文献   

5.
The method for constructing first integrals and general solutions of nonlinear ordinary differential equations is presented. The method is based on index accounting of the Fuchs indices, which appeared during the Painlevé test of a nonlinear differential equation. The Fuchs indices indicate us the leading members of the first integrals for the origin differential equation. Taking into account the values of the Fuchs indices, we can construct the auxiliary equation, which allows to look for the first integrals of nonlinear differential equations. The method is used to obtain the first integrals and general solutions of the KdV‐Burgers and the mKdV‐Burgers equations with a source. The nonautonomous first integrals in the polynomials form are found. The general solutions of these nonlinear differential equations under at some additional conditions on the parameters of differential equations are also obtained. Illustrations of some solutions of the KdV‐Burgers and the mKdV‐Burgers are given.  相似文献   

6.
In this work, the integrable bidirectional sixth-order Sawada-Kotera equation is examined. The equation considered is a KdV6 equation that was derived from the fifth order Sawada-Kotera equation. Multiple soliton solutions and multiple singular soliton solutions are formally derived for this equation. The Cole-Hopf transformation method combined with the Hirota’s bilinear method are used to determine the two sets of solutions, where each set has a distinct structure.  相似文献   

7.
A class of nonlocal symmetries of the Camassa-Holm type equations with bi-Hamiltonian structures, including the Camassa-Holm equation, the modified Camassa-Holm equation, Novikov equation and Degasperis-Procesi equation, is studied. The nonlocal symmetries are derived by looking for the kernels of the recursion operators and their inverse operators of these equations. To find the kernels of the recursion operators, the authors adapt the known factorization results for the recursion operators of the KdV, modified KdV, Sawada-Kotera and Kaup-Kupershmidt hierarchies, and the explicit Liouville correspondences between the KdV and Camassa-Holm hierarchies, the modified KdV and modified Camassa-Holm hierarchies, the Novikov and Sawada-Kotera hierarchies, as well as the Degasperis-Procesi and Kaup-Kupershmidt hierarchies.  相似文献   

8.
We establish the splitting of homoclinic orbits for a near-integrable lattice modified KdV (mKdV) equation with periodic boundary conditions. We use the Bäcklund transformation to construct homoclinic orbits of the lattice mKdV equation. We build the Melnikov function with the gradient of the invariant defined through the discrete Floquet discriminant evaluated at critical points. The criteria for the persistence of homoclinic solutions of the perturbed lattice mKdV equation are established.  相似文献   

9.
The present paper is devoted to the development of a new scheme to solve the KdV equation locally on sub-domains using similarity reductions for partial differential equations. Each sub-domain is divided into three-grid points. The ordinary differential equation deduced from the similarity reduction can be linearized, integrated analytically and then used to approximate the flux vector in the KdV equation. The arbitrary constants in the analytical solution of the similarity equation can be determined in terms of the dependent variables at the grid points in each sub-domain. This approach eliminates the difficulties associated with boundary conditions for the similarity reductions over the whole solution domain. Numerical results are obtained for two test problems to show the behavior of the solution of the problems. The computed results are compared with other numerical results.  相似文献   

10.
In this work we study the KdV equation and the Gardner equation with time-dependent coefficients and forcing term for each equation. A generalized wave transformation is used to convert each equation to a homogeneous equation. The soliton ansatz will be applied to the homogeneous equations to obtain soliton solutions.  相似文献   

11.
In this article, we consider iterative operator‐splitting methods for nonlinear differential equations with bounded and unbounded operators. The main feature of the proposed idea is the embedding of Newton's method for solving the split parts of the nonlinear equation at each step. The convergence properties of such a mixed method are studied and demonstrated. We confirm with numerical applications the effectiveness of the proposed scheme in comparison with the standard operator‐splitting methods by providing improved results and convergence rates. We apply our results to deposition processes. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1026–1054, 2011  相似文献   

12.
关于KdV方程孤子解的研究   总被引:1,自引:0,他引:1  
何进春  黄念宁 《应用数学》2007,20(1):145-150
KdV方程的多孤子解很难直接验证,本文通过证明GLM反散射变换方程导出的Jost解满足两个Lax方程的方法,解决了这个问题.  相似文献   

13.
The higher order wave equation of KdV type, which describes many important physical phenomena, has been investigated widely in last several decades. In this work, multi-symplectic formulations for the higher order wave equation of KdV type are presented, and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is calculated by the multi-symplectic Fourier pseudospectral scheme. Numerical experiments are carried out, which verify the efficiency of the Fourier pseudospectral method.  相似文献   

14.
The solution of the linear system Ax = b by iterative methods requires a splitting of the coefficient matrix in the form A = MN where M is usually chosen to be a diagonal or a triangular matrix. In this article we study relaxation methods induced by the Hermitian and skew-Hermitian splittings for the solution of the linear system arising from a compact fourth order approximation to the one dimensional convection-diffusion equation and compare the convergence rates of these relaxation methods to that of the widely used successive overrelaxation (SOR) method. Optimal convergence parameters are derived for each method and numerical experiments are given to supplement the theoretical estimates. For certain values of the diffusion parameter, a relaxation method based on the Hermitian splitting converges faster than SOR. For two-dimensional problems a block form of the iterative algorithm is presented. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 581–591, 1998  相似文献   

15.
In this short letter, new exact solutions including kink solutions, soliton-like solutions and periodic form solutions for a combined version of the potential KdV equation and the Schwarzian KdV equation are obtained using the generalized Riccati equation mapping method.  相似文献   

16.
In this paper, we demonstrate that 14 solutions from 34 of the combined KdV and Schwarzian KdV equation obtained by Li [Z.T. Li, Appl. Math. Comput. 215 (2009) 2886-2890] are wrong and do not satisfy the equation. The other a number of exact solutions are equivalent each other.  相似文献   

17.
There is increasing motivation for solving time-dependent differential equations with iterative splitting schemes. While Magnus expansion has been intensively studied and widely applied for solving explicitly time-dependent problems, the combination with iterative splitting schemes can open up new areas. The main problems with the Magnus expansion are the exponential character and the difficulty of deriving practical higher order algorithms. An alternative method is based on iterative splitting methods that take into account a temporally inhomogeneous equation. In this work, we show that the ideas derived from the iterative splitting methods can be used to solve time-dependent problems. Examples are discussed.  相似文献   

18.
EXACT SOLUTIONS OF THE VARIABLE COEFFICIENT KdV AND SG TYPE EQUATIONS   总被引:16,自引:0,他引:16  
In this paper,the variable cofficient KdV equation with dissipative loss and nonuniformity terms and the variable coefficient SG equation with nonuniformity term are studied. The exact solutions of the KdV and SG equations are obtained. In particular,the soliton solutions oftwo equations are found.  相似文献   

19.
The generalized tanh-coth method is used to construct periodic and soliton solutions for a new integrable system, which has been derived from an integrable sixth-order nonlinear wave equation (KdV6). The system is formed by two equations. One of the equations may be considered as a Korteweg-de Vries equation with a source and the second equation is a third-order linear differential equation.  相似文献   

20.
非线性发展方程新的显式精确解   总被引:6,自引:0,他引:6  
借助Mathematica系统,采用三角函数法和吴文俊消元法,本文获得了著名的2+1维KP方程的若干精确解,其中包括新的精确解和孤波解.在此基础上,进而得到著名KdV方程、Hirota-Satsuma方程和耦合KdV方程的一些精确解.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号