首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this article we consider iterative operator-splitting methods for nonlinear differential equations with respect to their eigenvalues. The main focus of the proposed idea is the fixed-point iterative scheme that linearizes our underlying equations. On the basis of the approximated eigenvalues of such linearized systems we choose the order of the operators for our iterative splitting scheme. The convergence properties of such a mixed method are studied and demonstrated. We confirm with numerical applications the effectiveness of the proposed scheme in comparison with the standard operator-splitting methods by providing improved results and convergence rates. We apply our results to deposition processes.  相似文献   

3.
For solving large sparse systems of linear equations, we construct a paradigm of two-step matrix splitting iteration methods and analyze its convergence property for the nonsingular and the positive-definite matrix class. This two-step matrix splitting iteration paradigm adopts only one single splitting of the coefficient matrix, together with several arbitrary iteration parameters. Hence, it can be constructed easily in actual applications, and can also recover a number of representatives of the existing two-step matrix splitting iteration methods. This result provides systematic treatment for the two-step matrix splitting iteration methods, establishes rigorous theory for their asymptotic convergence, and enriches algorithmic family of the linear iteration solvers, for the iterative solutions of large sparse linear systems.  相似文献   

4.
For the large sparse linear complementarity problems, by reformulating them as implicit fixed‐point equations based on splittings of the system matrices, we establish a class of modulus‐based matrix splitting iteration methods and prove their convergence when the system matrices are positive‐definite matrices and H+‐matrices. These results naturally present convergence conditions for the symmetric positive‐definite matrices and the M‐matrices. Numerical results show that the modulus‐based relaxation methods are superior to the projected relaxation methods as well as the modified modulus method in computing efficiency. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
1. IntroductionConsider the large sparse system of linear equationsAx = b, (1.1)where, for a fixed positive integer cr, A e L(R") is a symmetric positive definite (SPD) matrir,having the bloCked formx,b E R" are the uDknwn and the known vectors, respectively, having the correspondingblocked formsni(ni S n, i = 1, 2,', a) are a given positthe integers, satisfying Z ni = n. This systemi= 1of linear equations often arises in sultable finite element discretizations of many secondorderseifad…  相似文献   

6.
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of practical and efficient structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to efficient and high-quality preconditioning matrices for some typical matrices from the real-world applications.

  相似文献   


7.
For solving the large sparse linear complementarity problems, we establish modified modulus‐based matrix splitting iteration methods and present the convergence analysis when the system matrices are H+‐matrices. The optima of parameters involved under some scopes are also analyzed. Numerical results show that in computing efficiency, our new methods are superior to classical modulus‐based matrix splitting iteration methods under suitable conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we review recent progress on two related issues. Firstly, the discretisation of partial differential equations of quantum mechanics in a semiclassical regime. Due to the presence of a small parameter, such equations exhibit high oscillations and multiscale behaviour, rendering them difficult to discretise. We describe a methodology, using symmetric Zassenhaus splittings in a free Lie algebra, which allows for their exceedingly fast and accurate numerics. The imperative of preserving the unitarity of the underlying flow takes us to the second theme of this paper, approximation of derivatives by skew-symmetric matrices. Here, we identify a gap in the elementary theory of finite-difference approximations: in the presence of Dirichlet boundary conditions, it is impossible to approximate the derivative to order higher than two on a uniform grid! This motivates the investigation of skew symmetry on non-uniform grids, an endeavour which, although still in its infancy, is already replete with interesting results. We conclude by discussing a number of generalisations and open problems.  相似文献   

9.
Important parts of adaptive wavelet methods are well-conditioned wavelet stiffness matrices and an efficient approximate multiplication of quasi-sparse stiffness matrices with vectors in wavelet coordinates. Therefore it is useful to develop a well-conditioned wavelet basis with respect to which both the mass and stiffness matrices are sparse in the sense that the number of nonzero elements in each column is bounded by a constant. Consequently, the stiffness matrix corresponding to the n-dimensional Laplacian in the tensor product wavelet basis is also sparse. Then a matrix–vector multiplication can be performed exactly with linear complexity. In this paper, we construct a wavelet basis based on Hermite cubic splines with respect to which both the mass matrix and the stiffness matrix corresponding to a one-dimensional Poisson equation are sparse. Moreover, a proposed basis is well-conditioned on low decomposition levels. Small condition numbers for low decomposition levels and a sparse structure of stiffness matrices are kept for any well-conditioned second order partial differential equations with constant coefficients; furthermore, they are independent of the space dimension.  相似文献   

10.
王洋  伍渝江  付军 《计算数学》2014,36(3):291-302
修正的Hermite/反Hermite分裂(MHSS)迭代方法是一类求解大型稀疏复对称线性代数方程组的无条件收敛的迭代算法.基于非线性代数方程组的特殊结构和性质,我们选取Picard迭代为外迭代方法,MHSS迭代作为内迭代方法,构造了求解大型稀疏弱非线性代数方程组的Picard-MHSS和非线性MHSS-like方法.这两类方法的优点是不需要在每次迭代时均精确计算和存储Jacobi矩阵,仅需要在迭代过程中求解两个常系数实对称正定子线性方程组.除此之外,在一定条件下,给出了两类方法的局部收敛性定理.数值结果证明了这两类方法是可行、有效和稳健的.  相似文献   

11.
正定反Hermite分裂(PSS)方法是求解大型稀疏非Hermite正定线性代数方程组的一类无条件收敛的迭代算法.将其作为不精确Newton方法的内迭代求解器,我们构造了一类用于求解大型稀疏且具有非Hermite正定Jacobi矩阵的非线性方程组的不精确Newton-PSS方法,并对方法的局部收敛性和半局部收敛性进行了详细的分析.数值结果验证了该方法的可行性与有效性.  相似文献   

12.
Weakenings of the L and P-properties are considered. It ib shown that if semigroups, rings, or Lie Algebras of matrices have certain of these properties, then they are triangular. In particular the result of Zassenhaus on L-semigroups is generalized. Also, Lie Algebras over a field of characteristic 0 which have the L-property are triangular.  相似文献   

13.
刘瑶宁 《计算数学》2022,44(2):187-205
一类空间分数阶扩散方程经过有限差分离散后所得到的离散线性方程组的系数矩阵是两个对角矩阵与Toeplitz型矩阵的乘积之和.在本文中,对于几乎各向同性的二维或三维空间分数阶扩散方程的离散线性方程组,采用预处理Krylov子空间迭代方法,我们利用其系数矩阵的特殊结构和具体性质构造了一类分块快速正则Hermite分裂预处理子.通过理论分析,我们证明了所对应的预处理矩阵的特征值大部分都聚集于1的附近.数值实验也表明,这类分块快速正则Hermite分裂预处理子可以明显地加快广义极小残量(GMRES)方法和稳定化的双共轭梯度(BiCGSTAB)方法等Krylov子空间迭代方法的收敛速度.  相似文献   

14.
By further generalizing the modified skew-Hermitian triangular splitting iteration methods studied in [L. Wang, Z.-Z. Bai, Skew-Hermitian triangular splitting iteration methods for non-Hermitian positive definite linear systems of strong skew-Hermitian parts, BIT Numer. Math. 44 (2004) 363-386], in this paper, we present a new iteration scheme, called the product-type skew-Hermitian triangular splitting iteration method, for solving the strongly non-Hermitian systems of linear equations with positive definite coefficient matrices. We discuss the convergence property and the optimal parameters of this method. Moreover, when it is applied to precondition the Krylov subspace methods, the preconditioning property of the product-type skew-Hermitian triangular splitting iteration is analyzed in detail. Numerical results show that the product-type skew-Hermitian triangular splitting iteration method can produce high-quality preconditioners for the Krylov subspace methods for solving large sparse positive definite systems of linear equations of strong skew-Hermitian parts.  相似文献   

15.
In this paper, we study a class of weakly nonlinear complementarity problems arising from the discretization of free boundary problems. By reformulating the complementarity problems as implicit fixed‐point equations based on splitting of the system matrices, we propose a class of modulus‐based matrix splitting algorithms. We show their convergence by assuming that the system matrix is positive definite. Moreover, we give several kinds of typical practical choices of the modulus‐based matrix splitting iteration methods based on the different splitting of the system matrix. Numerical experiments on two model problems are presented to illustrate the theoretical results and examine the numerical effectiveness of our modulus‐based matrix splitting algorithms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
The finite difference discretization of the spatial fractional diffusion equations gives discretized linear systems whose coefficient matrices have a diagonal‐plus‐Toeplitz structure. For solving these diagonal‐plus‐Toeplitz linear systems, we construct a class of diagonal and Toeplitz splitting iteration methods and establish its unconditional convergence theory. In particular, we derive a sharp upper bound about its asymptotic convergence rate and deduct the optimal value of its iteration parameter. The diagonal and Toeplitz splitting iteration method naturally leads to a diagonal and circulant splitting preconditioner. Analysis shows that the eigenvalues of the corresponding preconditioned matrix are clustered around 1, especially when the discretization step‐size h is small. Numerical results exhibit that the diagonal and circulant splitting preconditioner can significantly improve the convergence properties of GMRES and BiCGSTAB, and these preconditioned Krylov subspace iteration methods outperform the conjugate gradient method preconditioned by the approximate inverse circulant‐plus‐diagonal preconditioner proposed recently by Ng and Pan (M.K. Ng and J.‐Y. Pan, SIAM J. Sci. Comput. 2010;32:1442‐1464). Moreover, unlike this preconditioned conjugate gradient method, the preconditioned GMRES and BiCGSTAB methods show h‐independent convergence behavior even for the spatial fractional diffusion equations of discontinuous or big‐jump coefficients.  相似文献   

17.
A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.  相似文献   

18.
For large sparse systems of linear equations iterative techniques are attractive. In this paper, we study a splitting method for an important class of symmetric and indefinite system. Theoretical analyses show that this method converges to the unique solution of the system of linear equations for all t>0 (t is the parameter). Moreover, all the eigenvalues of the iteration matrix are real and nonnegative and the spectral radius of the iteration matrix is decreasing with respect to the parameter t. Besides, a preconditioning strategy based on the splitting of the symmetric and indefinite coefficient matrices is proposed. The eigensolution of the preconditioned matrix is described and an upper bound of the degree of the minimal polynomials for the preconditioned matrix is obtained. Numerical experiments of a model Stokes problem and a least‐squares problem with linear constraints presented to illustrate the effectiveness of the method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
P. Benner 《PAMM》2002,1(1):492-495
Quadratic matrix equations and in particular symmetric algebraic Riccati equations play a fundamental role in systems and control theory. Classically, they are solved via methods using their connection to Hamiltonian eigenproblems. Due to the ever‐increasing complexity of the models describing the underlying control problems, new methods are needed that can be used for large‐scale problems. In particular, sparsity of the coefficient matrices, obtained, e.g., from semi‐discretizing partial differential equations to describe the physical process to be controlled, need to be addressed. We briefly review recent approaches based on Krylov subspace methods and discuss a new approach employing a sparse implementation of Newton's method for algebraic Riccati equations.  相似文献   

20.
《Journal of Complexity》2002,18(1):242-286
Commencing with a brief survey of Lie-group theory and differential equations evolving on Lie groups, we describe a number of numerical algorithms designed to respect Lie-group structure: Runge–Kutta–Munthe-Kaas schemes, Fer and Magnus expansions. This is followed by derivation of the computational cost of Fer and Magnus expansions, whose conclusion is that for order four, six, and eight an appropriately discretized Magnus method is always cheaper than a Fer method of the same order. Each Lie-group method of the kind surveyed in this paper requires the computation of a matrix exponential. Classical methods, e.g., Krylov-subspace and rational approximants, may fail to map elements in a Lie algebra to a Lie group. Therefore we survey a number of approximants based on the splitting approach and demonstrate that their cost is compatible (and often superior) to classical methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号