首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By further generalizing the skew-symmetric triangular splitting iteration method studied by Krukier, Chikina and Belokon (Applied Numerical Mathematics, 41 (2002), pp. 89–105), in this paper, we present a new iteration scheme, called the modified skew-Hermitian triangular splitting iteration method, for solving the strongly non-Hermitian systems of linear equations with positive definite coefficient matrices. We discuss the convergence property and the optimal parameters of this new method in depth. Moreover, when it is applied to precondition the Krylov subspace methods like GMRES, the preconditioning property of the modified skew-Hermitian triangular splitting iteration is analyzed in detail. Numerical results show that, as both solver and preconditioner, the modified skew-Hermitian triangular splitting iteration method is very effective for solving large sparse positive definite systems of linear equations of strong skew-Hermitian parts.  相似文献   

2.
潘春平 《计算数学》2022,44(4):481-495
本文针对求解大型稀疏非Hermitian正定线性方程组的HSS迭代方法,利用迭代法的松弛技术进行加速,提出了一种具有三个参数的超松弛HSS方法(SAHSS)和不精确的SAHSS方法(ISAHSS),它采用CG和一些Krylov子空间方法作为其内部过程,并研究了SAHSS和ISAHSS方法的收敛性.数值例子验证了新方法的有效性.  相似文献   

3.
A shift splitting concept is introduced and, correspondingly, a shift-splitting iteration scheme and a shift-splitting preconditioner are presented, for solving the large sparse system of linear equations of which the coefficient matrix is an ill-conditioned non-Hermitian positive definite matrix. The convergence property of the shift-splitting iteration method and the eigenvalue distribution of the shift-splitting preconditioned matrix are discussed in depth, and the best possible choice of the shift is investigated in detail. Numerical computations show that the shift-splitting preconditioner can induce accurate, robust and effective preconditioned Krylov subspace iteration methods for solving the large sparse non-Hermitian positive definite systems of linear equations.  相似文献   

4.
正定反Hermite分裂(PSS)方法是求解大型稀疏非Hermite正定线性代数方程组的一类无条件收敛的迭代算法.将其作为不精确Newton方法的内迭代求解器,我们构造了一类用于求解大型稀疏且具有非Hermite正定Jacobi矩阵的非线性方程组的不精确Newton-PSS方法,并对方法的局部收敛性和半局部收敛性进行了详细的分析.数值结果验证了该方法的可行性与有效性.  相似文献   

5.
An effective algorithm for solving large saddle-point linear systems, presented by Krukier et al., is applied to the constrained optimization problems. This method is a modification of skew-Hermitian triangular splitting iteration methods. We consider the saddle-point linear systems with singular or semidefinite (1, 1) blocks. Moreover, this method is applied to precondition the GMRES. Numerical results have confirmed the effectiveness of the method and showed that the new method can produce high-quality preconditioners for the Krylov subspace methods for solving large sparse saddle-point linear systems.  相似文献   

6.
For the non-Hermitian and positive semidefinite systems of linear equations, we derive necessary and sufficient conditions for guaranteeing the unconditional convergence of the preconditioned Hermitian and skew-Hermitian splitting iteration methods. We then apply these results to block tridiagonal linear systems in order to obtain convergence conditions for the corresponding block variants of the preconditioned Hermitian and skew-Hermitian splitting iteration methods.

  相似文献   


7.
白中治等提出了解非埃尔米特正定线性方程组的埃尔米特和反埃尔米特分裂(HSS)迭代方法(Bai Z Z,Golub G H,Ng M K.Hermitian and skew-Hermitian splitting methodsfor non-Hermitian positive definite linear systems.SIAM J.Matrix Anal.Appl.,2003,24:603-626).本文精确地估计了用HSS迭代方法求解广义鞍点问题时在加权2-范数和2-范数下的收缩因子.在实际的计算中,正是这些收缩因子而不是迭代矩阵的谱半径,本质上控制着HSS迭代方法的实际收敛速度.根据文中的分析,求解广义鞍点问题的HSS迭代方法的收缩因子在加权2-范数下等于1,在2-范数下它会大于等于1,而在某种适当选取的范数之下,它则会小于1.最后,用数值算例说明了理论结果的正确性.  相似文献   

8.
Recently, by applying the minimum residual technique to the Hermitian and skew-Hermitian splitting (HSS) iteration scheme, a minimum residual HSS (MRHSS) iteration method was proposed for solving non-Hermitian positive definite linear systems. Although the MRHSS iteration method is very efficient, it is conditionally convergent. In this work, we further study the convergence of the MRHSS iteration method, and show that it can unconditionally convergent if its parameters are determined by minimizing a new norm of the residual. Numerical results verify that the MRHSS method discussed in this work is also very efficient.  相似文献   

9.
Based on the Hermitian and skew-Hermitian splitting iteration scheme, we propose a Uzawa-type iteration method for solving a class of saddle-point problems whose coefficient matrix has non-Hermitian positive definite (1, 1)-block. The convergence properties of this novel method are analyzed, which show that the Uzawa-type iteration method is convergent if the iteration parameters satisfy suitable restrictions.  相似文献   

10.
In this note, based on the previous work by Pour and Goughery (New Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems Numer. Algor. 69 (2015) 207–225), we further discuss this new Hermitian and skew-Hermitian splitting (described as NHSS) methods for non-Hermitian positive definite linear systems. Some new convergence conditions of the NHSS method are obtained, which are superior to the results in the above paper.  相似文献   

11.
王洋  伍渝江  付军 《计算数学》2014,36(3):291-302
修正的Hermite/反Hermite分裂(MHSS)迭代方法是一类求解大型稀疏复对称线性代数方程组的无条件收敛的迭代算法.基于非线性代数方程组的特殊结构和性质,我们选取Picard迭代为外迭代方法,MHSS迭代作为内迭代方法,构造了求解大型稀疏弱非线性代数方程组的Picard-MHSS和非线性MHSS-like方法.这两类方法的优点是不需要在每次迭代时均精确计算和存储Jacobi矩阵,仅需要在迭代过程中求解两个常系数实对称正定子线性方程组.除此之外,在一定条件下,给出了两类方法的局部收敛性定理.数值结果证明了这两类方法是可行、有效和稳健的.  相似文献   

12.
Recently, Bai et al. (2013) proposed an effective and efficient matrix splitting iterative method, called preconditioned modified Hermitian/skew-Hermitian splitting (PMHSS) iteration method, for two-by-two block linear systems of equations. The eigenvalue distribution of the iterative matrix suggests that the splitting matrix could be advantageously used as a preconditioner. In this study, the CGNR method is utilized for solving the PMHSS preconditioned linear systems, and the performance of the method is considered by estimating the condition number of the normal equations. Furthermore, the proposed method is compared with other PMHSS preconditioned Krylov subspace methods by solving linear systems arising in complex partial differential equations and a distributed control problem. The numerical results demonstrate the difference in the performance of the methods under consideration.  相似文献   

13.
Several splittings for non-Hermitian linear systems   总被引:3,自引:0,他引:3  
For large sparse non-Hermitian positive definite system of linear equations,we present several variants of the Hermitian and skew-Hermitian splitting(HSS)about the coefficient matrix and establish correspondingly several HSS-based iterative schemes.Theoretical analyses show that these methods are convergent unconditionally to the exact solution of the referred system of linear equations,and they may show advantages on problems that the HSS method is ineffiective.  相似文献   

14.
A generalized skew‐Hermitian triangular splitting iteration method is presented for solving non‐Hermitian linear systems with strong skew‐Hermitian parts. We study the convergence of the generalized skew‐Hermitian triangular splitting iteration methods for non‐Hermitian positive definite linear systems, as well as spectrum distribution of the preconditioned matrix with respect to the preconditioner induced from the generalized skew‐Hermitian triangular splitting. Then the generalized skew‐Hermitian triangular splitting iteration method is applied to non‐Hermitian positive semidefinite saddle‐point linear systems, and we prove its convergence under suitable restrictions on the iteration parameters. By specially choosing the values of the iteration parameters, we obtain a few of the existing iteration methods in the literature. Numerical results show that the generalized skew‐Hermitian triangular splitting iteration methods are effective for solving non‐Hermitian saddle‐point linear systems with strong skew‐Hermitian parts. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
For non-Hermitian saddle point linear systems, Pan, Ng and Bai presented a positive semi-definite and skew-Hermitian splitting (PSS) preconditioner (Pan et al. Appl. Math. Comput. 172, 762–771 2006), to accelerate the convergence rate of the Krylov subspace iteration methods like the GMRES method. In this paper, a relaxed positive semi-definite and skew-Hermitian (RPSS) splitting preconditioner based on the PSS preconditioner for the non-Hermitian generalized saddle point problems is considered. The distribution of eigenvalues and the form of the eigenvectors of the preconditioned matrix are analyzed. Moreover, an upper bound on the degree of the minimal polynomial is also studied. Finally, numerical experiments of a model Navier-Stokes equation are presented to illustrate the efficiency of the RPSS preconditioner compared to the PSS preconditioner, the block diagonal preconditioner (BD), and the block triangular preconditioner (BT) in terms of the number of iteration and computational time.  相似文献   

16.
Hermitian and skew-Hermitian splitting(HSS) method has been proved quite successfully in solving large sparse non-Hermitian positive definite systems of linear equations. Recently, by making use of HSS method as inner iteration, Newton-HSS method for solving the systems of nonlinear equations with non-Hermitian positive definite Jacobian matrices has been proposed by Bai and Guo. It has shown that the Newton-HSS method outperforms the Newton-USOR and the Newton-GMRES iteration methods. In this paper, a class of modified Newton-HSS methods for solving large systems of nonlinear equations is discussed. In our method, the modified Newton method with R-order of convergence three at least is used to solve the nonlinear equations, and the HSS method is applied to approximately solve the Newton equations. For this class of inexact Newton methods, local and semilocal convergence theorems are proved under suitable conditions. Moreover, a globally convergent modified Newton-HSS method is introduced and a basic global convergence theorem is proved. Numerical results are given to confirm the effectiveness of our method.  相似文献   

17.
We present a Hermitian and skew-Hermitian splitting (HSS) iteration method for solving large sparse continuous Sylvester equations with non-Hermitian and positive definite/semi-definite matrices. The unconditional convergence of the HSS iteration method is proved and an upper bound on the convergence rate is derived. Moreover, to reduce the computing cost, we establish an inexact variant of the HSS iteration method and analyze its convergence property in detail. Numerical results show that the HSS iteration method and its inexact variant are efficient and robust solvers for this class of continuous Sylvester equations.  相似文献   

18.
Based on the HSS (Hermitian and skew-Hermitian splitting) and preconditioned HSS methods, we will present a generalized preconditioned HSS method for the large sparse non-Hermitian positive definite linear system. Our method is essentially a two-parameter iteration which can extend the possibility to optimize the iterative process. The iterative sequence produced by our generalized preconditioned HSS method can be proven to be convergent to the unique solution of the linear system. An exact parameter region of convergence for the method is strictly proved. A minimum value for the upper bound of the iterative spectrum is derived, which is relevant to the eigensystem of the products formed by inverse preconditioner and splitting. An efficient preconditioner based on incremental unknowns is presented for the actual implementation of the new method. The optimality and efficiency are effectively testified by some comparisons with numerical results.  相似文献   

19.
In this paper, based on the Hermitian and skew-Hermitian splitting (HSS) iteration method, a single-step HSS (SHSS) iteration method is introduced to solve the non-Hermitian positive definite linear systems. Theoretical analysis shows that, under a loose restriction on the iteration parameter, the SHSS method is convergent to the unique solution of the linear system. Furthermore, we derive an upper bound for the spectral radius of the SHSS iteration matrix, and the quasi-optimal parameter is obtained to minimize the above upper bound. Numerical experiments are reported to the efficiency of the SHSS method; numerical comparisons show that the proposed SHSS method is superior to the HSS method under certain conditions.  相似文献   

20.
We present a nested splitting conjugate gradient iteration method for solving large sparse continuous Sylvester equation, in which both coefficient matrices are (non-Hermitian) positive semi-definite, and at least one of them is positive definite. This method is actually inner/outer iterations, which employs the Sylvester conjugate gradient method as inner iteration to approximate each outer iterate, while each outer iteration is induced by a convergent and Hermitian positive definite splitting of the coefficient matrices. Convergence conditions of this method are studied and numerical experiments show the efficiency of this method. In addition, we show that the quasi-Hermitian splitting can induce accurate, robust and effective preconditioned Krylov subspace methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号