首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, the existence of positive solutions for the mixed boundary problem of quasilinear elliptic equation {-div (|∇u|^{p-2}∇u) = |u|^{p^∗-2}u + f(x, u), \quad u > 0, \quad x ∈ Ω u|_Γ_0 = 0, \frac{∂u}{∂\overrightarrow{n}}|_Γ_1 = 0 is obtained, where Ω is a bounded smooth domain in R^N, ∂Ω = \overrightarrow{Γ}_0 ∪ \overrightarrow{Γ}_1, 2 ≤ p < N, p^∗ = \frac{Np}{N-p}, Γ_0 and Γ_1 are disjoint open subsets of ∂Ω.  相似文献   

2.
In this paper we study the first boundary value problem for nonlinear diffusion equation \frac{∂u}{∂t} + \frac{∂}{∂x}f(u) = \frac{∂}{∂x}A(\frac{∂}{∂x}B(u)) whereA(s) = ∫¹_0a(σ)dσ, B(s) = ∫¹_0b(σ)dσ with a(s) ≥ 0, b(s) ≥ 0. We prove the existence of BV solutions under the much general structural conditions lim_{s → + ∞} A(s) = +∞, lim_{s → - ∞} A(s) = -∞ Moreover, we show the uniqueness without any structural conditions.  相似文献   

3.
In this paper, we study the following Eigen-problem {-\frac{∂}{∂x_i}(a_{ij}(x, u)\frac{∂u}{∂x_j}) + \frac{1}{2}a_{iju}(x,u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u = μμ\frac{n+2}{n-2} \quad in Ω \qquad (0.1) u = 0 \quad on ∂Ω u > 0 \quad in Ω ⊂ R^n under some assumptions. First. we minimize I(u) = \frac{1}{2}∫_Ωa_{ij}(x, u)\frac{∂u}{∂x_i}\frac{∂u}{∂x_j} + h(x)u² over E_α = {u ∈ H¹_0(Ω); ∫_Ωu^α = 1} ( 2 < α < N = \frac{2n}{n-2}) to give a H¹_0-solution U_α of the perturbation problems of (0.1). Since I is not differentiable in H¹_0(Ω), the key point is the estimate of U_α. Then, we derive local uniform bounds of (U_α) and give a 'bad' solution of (0.1). Last, we remove the singular points of the 'bad' solution to obtain a solution of (0.1), our result is a extension of that of Brezis & Nirenberg.  相似文献   

4.
The present paper studies a continuous casting problem of two phases: \frac{∂H(u)}{∂t} + b (t) \frac{∂H(u)}{∂x} - Δu = 0 \quad in 𝒟¹ (Ω_T) where u is che temperature. H (u) is a maximal monotonic graph. Ω_T = G × (0, T), where G = (0, a) × (0. 1) stands for the ingot. We obtain the existence and the uniqueness of weak solution and the existence of periodic solution for the first boundary problem.  相似文献   

5.
本文讨论下面一类分数阶微分方程多点边值问题 $$\align &D^{\alpha}_{0+}u(t) = f(t, u(t),~D^{\alpha-1}_{0+}u(t), D^{\alpha-2}_{0+}u(t), D^{\alpha-3}_{0+}u(t)),~~t\in(0,1), \\&I^{4-\alpha}_{0+}u(0) = 0, ~D^{\alpha-1}_{0+}u(0)=\displaystyle{\sum_{i=1}^{m}}\alpha_{i}D^{\alpha-1}_{0+}u(\xi_{i}),\\&D^{\alpha-2}_{0+}u(1)=\sum\limits_ {j=1}^{n}\beta_{j} D^{\alpha-2}_{0+}u(\eta_{j}),~D^{\alpha-3}_{0+}u(1)-D^{\alpha-3}_{0+}u(0)=D^{\alpha-2}_{0+}u(\frac{1}{2}),\endalign$$其中$3<\alpha \leq 4$是一个实数.通过应用Mawhin重合度理论和构建适当的算子,得到了该边值问题解的存在性结果.  相似文献   

6.
The paper deals with the following boundary problem of the second order quasilinear hyperbolic equation with a dissipative boundary condition on a part of the boundary:u_(tt)-sum from i,j=1 to n a_(ij)(Du)u_(x_ix_j)=0, in (0, ∞)×Ω,u|Γ_0=0,sum from i,j=1 to n, a_(ij)(Du)n_ju_x_i+b(Du)u_t|Γ_1=0,u|t=0=φ(x), u_t|t=0=ψ(x), in Ω, where Ω=Γ_0∪Γ_1, b(Du)≥b_0>0. Under some assumptions on the equation and domain, the author proves that there exists a global smooth solution for above problem with small data.  相似文献   

7.
In this paper,we discuss the problem for the nonlinear Schr(?)dinger equation(?)where Ω is the exterior domain of a compact set in B~n,a_j(u)=O(|u|),b_j(u)=O(|u|)(1≤j≤n),c(u)=O(|u|~2)near u=0.If n≥5,some Sobolev norm of u_0(x)is sufficiently small,under suitableassumptions on smoothnessand and compatibility and the shape of Ω,we get that the problem has aunique global solution u(t,x),with the decay estimate‖u(t,·)‖_(L(?)(Ω))=O(t~(-n/4)),‖u(t,·)‖_(L~4(Ω))=O(t~(-n/4)),t→+∞.  相似文献   

8.
We consider L^p-L^q estimates for the solution u(t,x) to tbe following perturbed Klein-Gordon equation ∂_{tt}u - Δu + u + V(x)u = 0 \qquad x∈ R^n, n ≥ 3 u(x,0) = 0, ∂_tu(x,0) = f(x) We assume that the potential V(x) and the initial data f(x) are compact, and V(x) is sufficiently small, then the solution u(t,x) of the above problem satisfies ||u(t)||_q ≤ Ct^{-a}||f||_p for t > 1 where a is the piecewise-linear function of 1/p and 1/q.  相似文献   

9.
Sabitov  K. B.  Bibakova  S. L. 《Mathematical Notes》2003,74(1-2):70-80
For the equation of mixed type $$\user1{L}\alpha \user1{u} \equiv \user1{u}_{\user1{xx}} + \user1{yu}_{\user1{yy}} + \alpha \user1{u}_\user1{y} + \lambda \user1{u}\user2{ = 0,}$$ where 0 < α < 1 and λ is a complex parameter, we obtain eigenvalues in a special domain by the method of separation of variables and construct the system of corresponding eigenfunctions of the Tricomi--Neumann spectral problem. We construct the solution of the Tricomi--Neumann problem as a sum of biorthogonal series.  相似文献   

10.
ln this paper we consider the model problem for a second order quasilinear degenerate parabolic equation {D_xG(u) = t^{2N-1}D²_xK(u) + t^{N-1}D_x,F(u) \quad for \quad x ∈ R,t > 0 u(x,0) = A \quad for \quad x < 0, u(x,0) = B \quad for \quad x > 0 where A < B, and N > O are given constants; K(u) =^{def} ∫^u_Ak(s)ds, G(u)=^{def} ∫^u_Ag(s)ds, and F(u) =^{def} ∫^u_Af(s)ds are real-valued absolutely continuous functions defined on [A, B] such that K(u) is increasing, G(u) strictly increasing, and \frac{F(B)}{G(B)}G(u) - F(u) nonnegative on [A, B]. We show that the model problem has a unique discontinuous solution u_0 (x, t) when k(s) possesses at least one interval of degeneracy in [A, B] and that on each curve of discontinuity, x = z_j(t) =^{def} s_jt^N, where s_j= const., j=l,2, …, u_0(x, t) must satisfy the following jump conditions, 1°. u_0(z_j(t) - 0, t) = a_j, u_0 (z_j(t) + 0, t) = b_j, and u_0(z_j(t) - 0, t) = [a_j, b_j] where {[a_j, b_j]; j = 1, 2, …} is the collection of all intervals of degeneracy possessed by k (s) in [A, B], that is, k(s) = 0 a. e. on [a_j, b_j], j = 1, 2, …, and k(s) > 0 a. e. in [A, B] \U_j[a_j, b_j], and 2°. (z_j(t)G(u_0(x, t)) + t^{2N-1}D_xK(u_0(x, t)) + t^{N-1}F(u_0(x, t)))|\frac{s=s_j+0}{s=s_j-0} = 0  相似文献   

11.
Abdulkadir Dogan 《Positivity》2018,22(5):1387-1402
This paper deals with the existence of positive solutions of nonlinear differential equation
$$\begin{aligned} u^{\prime \prime }(t)+ a(t) f(u(t) )=0,\quad 0<t <1, \end{aligned}$$
subject to the boundary conditions
$$\begin{aligned} u(0)=\sum _{i=1}^{m-2} a_i u (\xi _i) ,\quad u^{\prime } (1) = \sum _{i=1}^{m-2} b_i u^{\prime } (\xi _i), \end{aligned}$$
where \( \xi _i \in (0,1) \) with \( 0< \xi _1<\xi _2< \cdots<\xi _{m-2} < 1,\) and \(a_i,b_i \) satisfy   \(a_i,b_i\in [0,\infty ),~~ 0< \sum _{i=1}^{m-2} a_i <1,\) and \( \sum _{i=1}^{m-2} b_i <1. \) By using Schauder’s fixed point theorem, we show that it has at least one positive solution if f is nonnegative and continuous. Positive solutions of the above boundary value problem satisfy the Harnack inequality
$$\begin{aligned} \displaystyle \inf _{0 \le t \le 1} u(t) \ge \gamma \Vert u\Vert _\infty . \end{aligned}$$
  相似文献   

12.
The paper is devoted to the study of the behavior of the following mixed problem for large values of time:
where Ω is an unbounded region of ℝ n with, generally speaking, noncompact boundary ; the surface Γ is star-shaped (relative to the origin), ν is the unit outer normal to ∂Ω; and the initial functionsf andg are assumed to be sufficiently smooth and finite. Under certain restrictions on the part of the boundary Γ2 constrained by the impedance condition, we establish that one can match the impedanceg≥0 (characterizing the absorption of energy by the surface Γ2) to the geometric properties of this surface so that the energy on an arbitrary compact set will decay at a rate characteristic for the first mixed problem. Translated fromMatematicheskie Zametki, Vol. 66, No. 3, pp. 393–400, September, 1999.  相似文献   

13.
One considers the problem of the asymptotic behavior for K→+∞ of the solution of the Cauchy problem $$u_{tt} - u_{xx} + \kappa ^2 u = 0; u|_{t = 0} = \theta (x), u_t |_{t = 0} = 0 (t > 0 - fixed)$$ Hereθ(x) is the Heaviside function. In the neighborhood of the characteristics x=±t function u(x,t)?2 oscillates exceptionally fast (the wavelength is of order k?2). Near the t axis the asymptotics of u(x,t) contains the Fresnel integral.  相似文献   

14.
We prove the existence of an entropy solution for a class of nonlinear anisotropic elliptic unilateral problem associated to the following equation $$\begin{aligned} -\sum _{i=1}^{N} \partial _i a_i(x,u, \nabla u) -\sum _{i=1}^{N}\partial _{i}\phi _{i}( u)=\mu , \end{aligned}$$where the right hand side $$\mu $$ belongs to $$L^{1}(\Omega )+ W^{-1, \vec {p'}}(\Omega )$$. The operator $$-\sum _{i=1}^{N} \partial _i a_i(x,u, \nabla u) $$ is a Leray–Lions anisotropic operator and $$\phi _{i} \in C^{0}({\mathbb {R}}, {\mathbb {R}})$$.  相似文献   

15.
In this paper we prove the existence of a positive solution to the following superlinear elliptic Dirichlet problem, - Σ^n_{i,j=1}aij(x, u, Du)D_{ij}u = f(x, u, Du) in Ω, \quad u = 0 on ∂Ω where f satisfies certain growth conditions.  相似文献   

16.
ПустьM m - множество 2π-п ериодических функци йf с конечной нормой $$||f||_{p,m,\alpha } = \sum\limits_{k = 1}^m {||f^{(k)} ||_{_p } + \mathop {\sup }\limits_{h \ne 0} |h|^{ - \alpha } ||} f^{(m)} (o + h) - f^{(m)} (o)||_{p,} $$ где1 ≦ p ≦ ∞, 0≦α≦1. Рассмотр им средние Bалле Пуссе на $$(\sigma _{n,1} f)(x) = \frac{1}{\pi }\int\limits_0^{2x} {f(u)K_{n,1} (x - u)du} $$ и $$(L_{n,1} f)(x) = \frac{2}{{2n + 1}}\sum\limits_{k = 1}^{2n} {f(x_k )K_{n,1} } (x - x_k ),$$ де0≦l≦n и x k=2kπ/(2n+1). В работе по лучены оценки для вел ичин \(||f - \sigma _{n,1} f||_{p,r,\beta } \) и $$||f - L_{n,1} f||_{p,r,\beta } (r + \beta \leqq m + \alpha ).$$   相似文献   

17.
The paper suggests some conditions on the lower order terms, which provide that the solution of the Dirichlet problem for the general elliptic equation of the second order
$ \begin{gathered} - \sum\limits_{i,j = 1}^n {\left( {a_{i j} \left( x \right)u_{x_i } } \right)_{x_j } + } \sum\limits_{i = 1}^n {b_i \left( x \right)u_{x_i } - } \sum\limits_{i = 1}^n {\left( {c_i \left( x \right)u} \right)_{x_i } + d\left( x \right)u = f\left( x \right) - divF\left( x \right), x \in Q,} \hfill \\ \left. u \right|_{\partial Q} = u_0 \in L_2 \left( {\partial Q} \right) \hfill \\ \end{gathered} $ \begin{gathered} - \sum\limits_{i,j = 1}^n {\left( {a_{i j} \left( x \right)u_{x_i } } \right)_{x_j } + } \sum\limits_{i = 1}^n {b_i \left( x \right)u_{x_i } - } \sum\limits_{i = 1}^n {\left( {c_i \left( x \right)u} \right)_{x_i } + d\left( x \right)u = f\left( x \right) - divF\left( x \right), x \in Q,} \hfill \\ \left. u \right|_{\partial Q} = u_0 \in L_2 \left( {\partial Q} \right) \hfill \\ \end{gathered}   相似文献   

18.
We find new necessary conditions for the estimate ${||u||_{L^{q}_{t} (\mathbb{R}; L^{r}_{x} (\mathbb{R}^{n}))} \lesssim\,||F||_{L^{{\tilde{q}}^{\prime}}_{t}(\mathbb{R};L^{{\tilde{r}}^{\prime}}_{x}(\mathbb{R}^{n}))}}$ , where uu(t, x) is the solution to the Cauchy problem associated with the free inhomogeneous Schrödinger equation with identically zero initial data and inhomogeneity FF(t, x).  相似文献   

19.
具$p$-Laplacian 算子的多点边值问题迭代解的存在性   总被引:1,自引:0,他引:1  
利用单调迭代技巧和推广的Mawhin定理得到下述带有p-Laplacian算子的多点边值问题迭代解的存在性,{(Фp(u'))' f(t,u, Tu)=0, 0(≤)t(≤)1,u(0)=q-1∑i=1γiu(δi),u(1)=m-1∑i=1ηiu(ξi),其中Фp(s)=|s|p-2s,p>1;0<δi<1,γi>0,1(≤)i(≤)q-1;0<ξi<1,ηi(≥)0,1(≤)i(≤)m-1且q-1∑i=1γi<1,m-1∑i=1ηi(≤)1;Tu(t)=∫t0k(t,s)u(s)ds,k(t,s)∈C(I×I,R ).  相似文献   

20.
We study the global in time existence of small classical solutions to the nonlinear Schrödinger equation with quadratic interactions of derivative type in two space dimensions $\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&;t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&;x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)$ where the quadratic nonlinearity has the form ${\mathcal{N}( \nabla u,\nabla v) =\sum_{k,l=1,2}\lambda _{kl} (\partial _{k}u) ( \partial _{l}v) }We study the global in time existence of small classical solutions to the nonlinear Schr?dinger equation with quadratic interactions of derivative type in two space dimensions
$\left\{{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \right.\quad\quad\quad\quad\quad\quad (0.1)$\left\{\begin{array}{l@{\quad}l}i \partial _{t} u+\frac{1}{2}\Delta u=\mathcal{N}\left( \nabla u,\nabla u\right),&t >0 ,\;x\in {\bf R}^{2},\\ u\left( 0,x\right) =u_{0} \left( x\right),&x\in {\bf R}^{2}, \end{array}\right.\quad\quad\quad\quad\quad\quad (0.1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号