首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phase changes in Lennard-Jones (LJ) clusters containing between 74 and 78 atoms are investigated by means of exchange Monte Carlo simulations in the canonical ensemble. The replica temperatures are self-adapted to facilitate the convergence. Although the 74- and 78-atom clusters have icosahedral global minima, the clusters with 75-77 atoms have decahedral ground-state structures and they undergo a structural transition to icosahedral minima before melting. The structural transitions are characterized by quenching and by looking at the Q4 and Q6 orientational bond order parameters. The transition temperatures are estimated to be 0.114, 0.065, and 0.074 reduced units for LJ75, LJ76, and LJ77, respectively. These values, their ordering and the associated latent heats are compared with other estimates based on the harmonic superposition approach.  相似文献   

2.
Molecular dynamics is used to study the melting and structural transitions of small copper clusters. The melting temperature is found to be proportional to the average coordination number. Small icosahedral clusters melt at slightly higher temperatures than the cubic structures. Small cuboctahedral clusters are not stable but transform via a nondiffusive transition to icosahedral structure.  相似文献   

3.
Molecular dynamics simulations with embedded atom method potential were carried out for Al nanoparticles of 561 atoms in three structures: icosahedron, decahedron, and truncated octahedron. The total potential energy and specfic heat capacity were calculated to estimate the melting temperatures. The melting point is 540±10 K for the icosahedral structure,500±10 K for the decahedral structure, and 520±10 K for the truncated octahedral structure.With the results of mean square displacement, the bond order parameters and radius of gyration are consistent with the variation of total potential energy and specific heat capacity. The relaxation time and stretching parameters in the Kohlraush-William-Watts relaxation law were obtained by fitting the mean square displacement. The results show that the relationship between the relaxation time and the temperatures is in agreement with standard Arrhenius relation in the high temperature range.  相似文献   

4.
Molecular dynamics (MD) computer simulations have been carried out to study the structures, properties and crystal nucleation of nanoparticles with 453 Cu atoms. Structure information was analyzed from the MD simulations, while properties of nanoparticles of Cu453, such as melting point, freezing temperature, heat capacity and mo- lar volumes, have been estimated. The face center cubic (FCC) phase and icosahedron (Ih) phase were observed during the quenching process, and nucleation rates of crystallization to FCC crystal of Cu453 at temperatures of 650, 700, 750, and 800 K were analyzed. Both classical nucleation theory (CNT) and diffuse interface theory (DIT) were used to interpret our observed nucleation rates. The free energy and diffuse interface thickness between the liquid and the FCC crystal phases were estimated by the CNT and DIT respectively, and the results show that the DIT does not work properly to the system.  相似文献   

5.
使用Tight-binding势函数, 对FCC-Ni升温熔化过程的结构变化进行了分子动力学模拟. 在定压条件下模拟得到的Ni的熔点在1850 K与1900 K之间. 计算得到了体系在各温度下的径向分布函数和配位数分布等静态结构信息以及动力学性质. 计算得出的液体Ni的扩散系数在1900 K时约为5.02×10−9 m2•s−1, 与实验数据相符. 对液态体系中FCC短程有序结构可能发生的畸变以及由此导致的H-A键型变化进行了分析, 结合配位体构型搜索和键对分析方法计算了各温度下不同短程有序结构的分布. 计算表明, Ni在熔化之后仍保留有部分晶态短程结构, 但发生了较大的畸变, 同时液态中有少量的缺陷二十面体结构存在. 而液体Ni中大多数的配位体的几何构型介于FCC与缺陷二十面体之间.  相似文献   

6.
中介尺度Au纳米团簇熔化的分子动力学模拟   总被引:2,自引:0,他引:2  
采用分子动力学模拟技术,研究了原子个数为16~8628的 Au纳米团簇的熔化过程.采用 Johnson的EAM (embedded atom method) 模型,模拟结果表明,金属纳米团簇存在一中介尺度区域.对Au纳米团簇而言,当原子个数N >456时,团簇的热力学性质与团簇尺寸呈线性关系,熔化首先从表面开始,逐步向中心区域推进,且满足Tmb-Tmc(N)=aN(-1/3)的关系.另外,计算了中介区域的团簇的尺寸、熔化温度、表面能、熵、焓等热力学量以及均方根位移(RMSD)等动力学量,为研究纳米团簇提供定量数据.  相似文献   

7.
The lowest icosahedral and decahedral energies of LJ1001-1610 clusters are obtained using a greedy search method (GSM) based on lattice construction. By comparing the lowest energies of icosahedral and decahedral clusters with the same atoms, the structural transition of LJ clusters is studied. Results show that the critical size from icosahedra to decahedra is located at N = 1034. When the cluster size is larger than 1034, the optimal structures are decahedra except the LJ1367-1422 clusters near the magic number, 1402, of icosahedra. However, the energies of icosahedra near the next magic number, 2044, are higher than that of decahedra, which implies that decahedra will be the optimal structure when the cluster size is larger than 1422, even for those clusters near the magic numbers of icosahedra.  相似文献   

8.
The temperature dependence of structural properties and thermodynamic behavior of water clusters has been studied using Wang-Landau sampling. Four potential models, simple point charge/extended (SPC/E), transferable intermolecular potential 3 point (TIP3P), transferable intermolecular potential 4 point (TIP4P), and Gaussian charge polarizable (GCP), are compared for ground states and properties at finite temperatures. Although the hydrogen bond energy and the distance of the nearest-neighbor oxygen pair are significantly different for TIP4P and GCP models, they approach to similar ground state structures and melting transition temperatures in cluster sizes we considered. Comparing with TIP3P, SPC/E model provides properties closer to that of TIP4P and GCP.  相似文献   

9.
The crystal habit of fcc metal particles formed on an amorphous carbon film electrode in solution at different electrode potentials is discussed. The fcc metal particles have different crystallographic habits depending on applied electrode potential; that is, icosahedral and/or decahedral particles are formed at lower potentials, and fcc single-crystalline or polycrystalline particles at higher potentials. It was found that decahedra and icosahedra of Cu-Au alloy particles are formed in the potential region of underpotential deposition (UPD) of Cu at which only fcc Au single-crystalline particles and Au polycrystalline particles appear. This is attributed to the charge transfer from the UPD Cu ions to the Au overlayer of Cu-Au alloy particles. The formation of decahedral and icosahedral Cu-Au alloy particles depends on the composition of the Cu-Au alloy. On the basis of these results it was deduced that the contraction of the surface lattice of the growing particles is responsible for the formation of icosahedral and decahedral particles. Received: 25 February 1997 / Accepted: 21 April 1997  相似文献   

10.
Melting and glass transition for Ni clusters   总被引:1,自引:0,他引:1  
The melting of NiN clusters (N = 29, 50-150) has been investigated by using molecular dynamics (MD) simulations with a quantum corrected Sutton-Chen (Q-SC) many-body potential. Surface melting for Ni147, direct melting for Ni79, and the glass transition for Ni29 have been found, and those melting points are equal to 540, 680, and 940 K, respectively. It shows that the melting temperatures are not only size-dependent but also a symmetrical structure effect; in the neighborhood of the clusters, the cluster with higher symmetry has a higher melting point. From the reciprocal slopes of the caloric curves, the specific heats are obtained as 4.1 kB per atom for the liquid and 3.1 kB per atom for the solid; these values are not influenced by the cluster size apart in the transition region. The calculated results also show that latent heat of fusion is the dominant effect on the melting temperatures (Tm), and the relationship between S and L is given.  相似文献   

11.
Understanding the composition effect on the melting processes of bimetallic clusters is important for their applications. Here, we report the relationship between the melting point and the metal composition for the 55-atom icosahedral Ag-Pd bimetallic clusters by canonical Monte Carlo simulations, using the second-moment approximation of the tight-binding potentials (TB-SMA) for the metal-metal interactions. Abnormal melting phenomena for the systems of interest are found. Our simulation results reveal that the dependence of the melting point on the composition is not a monotonic change, but experiences three different stages. The melting temperatures of the Ag-Pd bimetallic clusters increase monotonically with the concentration of the Ag atoms first. Then, they reach a plateau presenting almost a constant value. Finally, they decrease sharply at a specific composition. The main reason for this change can be explained in terms of the relative stability of the Ag-Pd bimetallic clusters at different compositions. The results suggest that the more stable the cluster, the higher the melting point for the 55-atom icosahedral Ag-Pd bimetallic clusters at different compositions.  相似文献   

12.
The total structure determination of thiol-protected Au clusters has long been a major issue in cluster research. Herein, we report an unusual single crystal structure of a 25-gold-atom cluster (1.27 nm diameter, surface-to-surface distance) protected by eighteen phenylethanethiol ligands. The Au25 cluster features a centered icosahedral Au13 core capped by twelve gold atoms that are situated in six pairs around the three mutually perpendicular 2-fold axes of the icosahedron. The thiolate ligands bind to the Au25 core in an exclusive bridging mode. This highly symmetric structure is distinctly different from recent predictions of density functional theory, and it also violates the empirical golden rule "cluster of clusters", which would predict a biicosahedral structure via vertex sharing of two icosahedral M13 building blocks as previously established in various 25-atom metal clusters protected by phosphine ligands. These results point to the importance of the ligand-gold core interactions. The Au25(SR)18 clusters exhibit multiple molecular-like absorption bands, and we find the results are in good correspondence with time-dependent density functional theory calculations for the observed structure.  相似文献   

13.
14.
陈莹  王秀英  赵俊卿 《物理化学学报》2008,24(11):2042-2046
运用分子动力学方法模拟了小尺寸金属团簇的熔化过程, 原子之间的作用采用嵌入原子法(EAM)模型, 计算了均方根键长涨落δ随温度的变化, 以及升温过程中团簇热容的变化. 包含55、56个原子的面心立方(FCC)结构Au团簇的熔化过程是基本相同的. 而同样结构和数目Cu团簇的熔化过程却呈现出不同的趋势. Cu55、Cu56在模拟过程中都出现了FCC结构到二十面体结构的转变. 但由于表面多出了一个原子, Cu56的热容曲线比Cu55多了一个峰, 体系出现了预熔化现象. 这表明小尺寸团簇的固液转变的过程与团簇的原子类型、几何结构和原子数目密切相关.  相似文献   

15.
Infrared absorption experiments on light-triggered azobenzene peptides have been performed below and above the freezing point of the solvent dimethyl sulfoxide (DMSO). Even 20 K below the freezing point, illumination of the azobenzene chromophore resulted in IR absorption changes indicative of light-induced structural rearrangements of the peptide. In addition, new conformational states could be found at low temperature, which involve the formation of additional hydrogen bonds. In one sample the new low-temperature state survived melting and reheating and disappeared at 298 K only on the time scale of 10 min. The observations indicate that at low temperatures the peptide, together with traces of water present in the sample, forms a shell in the vicinity of the chromophore that facilitates internal motion even in the rigid cage of frozen DMSO.  相似文献   

16.
<正> The reduction of mixtures of mononuclear Au(I)and Ag(I) phosphine halide complexes with sodium,boronhydride in different solvents gave rise to two types of 25-atom clusters,and 37-atom and 38-atom clusters. These clusters were formed by vertex-sharing of Au-centered icosahedral cluster units (Au7Ag6). The nuclearity of these clusters is given by (13n-e) , where n is the number of the cluster units and e is the edges of the polyhedron formed by centers of the icosahedral cluster units . The structures of these novel 25-atom,37-atom and 38-atom clusters can be described as two icosahedra sharing one vertex (2×13-1 = 25)or three icosahedra sharing three vertices in a triangle(3×13-3 = 36)plus capping atom(s).  相似文献   

17.
了解金属纳米团簇的形成机制对于进一步发展其化学制备方法是必要的。我们利用盐酸(HCl)和十二硫醇(RSH)共同刻蚀L3 (L3: 1, 3-双二苯基膦丙烷)包覆的多分散性的Aun (15 ≤ n ≤ 60)团簇成功制备出单分散性的Au13(L3)2(SR)4Cl4纳米团簇,并结合原位同步辐射X射线吸收谱、原位真空紫外-可见吸收光谱和质谱技术,研究了Au13(L3)2(SR)4Cl4纳米团簇的动力学形成过程。结果表明,Au团簇从多分散到单分散的转变经历了3个明显不同的动力学步骤。首先,尺寸较大的多分散金属团簇Aun主要在HCl刻蚀作用下,形成尺寸较小的亚稳的中间产物Au8–Au11团簇。然后,这些中间产物与反应溶液中已有的Au(Ⅰ)-Cl物种反应,并与SR发生部分配体交换,逐渐长大为由SR和L3保护的Au13团簇。最后,形成的Au13团簇经过一个较缓慢的结构重组过程,最终形成稳定的Au13(L3)2(SR)4Cl4的纳米团簇。  相似文献   

18.
We report a theoretical study of superfluidity in CH(4)-doped para-H(2) nanoclusters. Path integral simulations for clusters of 12-16 H(2) around a single CH(4) molecule were carried out at temperatures between 0.5 and 2 K to study the superfluid response of the cluster. The results indicate that a rapid increase in the superfluid response is expected to occur around 1 K. We analyzed the structures and statistics of these clusters and found that the larger permutation cycles which dominate the superfluid component tend to adopt ringlike structures on the surface of the CH(4) molecule.  相似文献   

19.
The synthesis and structure of atomically precise Au130?xAgx (average x=98) alloy nanoclusters protected by 55 ligands of 4‐tert‐butylbenzenethiolate are reported. This large alloy structure has a decahedral M54 (M=Au/Ag) core. The Au atoms are localized in the truncated Marks decahedron. In the core, a drum of Ag‐rich sites is found, which is enclosed by a Marks decahedral cage of Au‐rich sites. The surface is exclusively Ag?SR; X‐ray absorption fine structure analysis supports the absence of Au?S bonds. The optical absorption spectrum shows a strong peak at 523 nm, seemingly a plasmon peak, but fs spectroscopic analysis indicates its non‐plasmon nature. The non‐metallicity of the Au130?xAgx nanocluster has set up a benchmark to study the transition to metallic state in the size evolution of bimetallic nanoclusters. The localized Au/Ag binary architecture in such a large alloy nanocluster provides atomic‐level insights into the Au?Ag bonds in bimetallic nanoclusters.  相似文献   

20.
Multislice calculations have been performed for Ag, Pd and Au clusters in the size range of 5.0 nm diameter of cuboctahedral, icosahedral and decahedral structures. It could be shown that tilt series are necessary for the classification of the structures. Particularly for arbitrary orientations, i.e. deviations from main directions such as 2-, 3- and 5-fold axes, the performance of computer simulations is mandatory. The influence of absorption is also studied for the case of a 100 kV microscope by introducing a complex potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号