首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
陈莹  王秀英  赵俊卿 《物理化学学报》2008,24(11):2042-2046
运用分子动力学方法模拟了小尺寸金属团簇的熔化过程, 原子之间的作用采用嵌入原子法(EAM)模型, 计算了均方根键长涨落δ随温度的变化, 以及升温过程中团簇热容的变化. 包含55、56个原子的面心立方(FCC)结构Au团簇的熔化过程是基本相同的. 而同样结构和数目Cu团簇的熔化过程却呈现出不同的趋势. Cu55、Cu56在模拟过程中都出现了FCC结构到二十面体结构的转变. 但由于表面多出了一个原子, Cu56的热容曲线比Cu55多了一个峰, 体系出现了预熔化现象. 这表明小尺寸团簇的固液转变的过程与团簇的原子类型、几何结构和原子数目密切相关.  相似文献   

2.
自由表面的Ni原子团簇的熔化   总被引:3,自引:0,他引:3  
王丽  杨华  边秀房  李喜珍 《物理化学学报》2001,17(12):1097-1101
采用分子动力学模拟技术研究了不同尺寸的Ni原子团簇的熔化过程.团簇的最初构型为FCC结构.研究结果表明,原子团簇的熔化温度与原子团簇中原子的个数有关,团簇的熔化首先从表面开始,当外层原子成为液态后,整个团簇的熔化从液态层开始,直至核心区域.该熔化过程可以被称为非均质熔化,自由表面充当非均质形核位置.作为对比,对无自由表面的大块固态Ni的熔化过程也进行了模拟,其熔化温度高于实验温度约400 K.表明对无自由表面的大块固态的熔化过程,液相形成无非均质形核位置,熔化的本质过程受均质形核机理控制.  相似文献   

3.
罗强  陈未  张智 《分子科学学报》2012,28(2):153-156
采用分子动力学方法和原子嵌入法模型势模拟了Pt原子和Au原子合金纳米团簇的熔化过程,研究了这些金属原子纳米团簇熔点与团簇组分的关系,发现不同组分纳米团簇的熔点不是单调变化的,同时均出现了负热容现象.通过对各种团簇溶化前后结构的比较研究,分析了导致这种现象的原因.  相似文献   

4.
采用Monte Carlo方法研究了石墨负载Au团簇的熔化行为,着重考察了载体对负载型团簇结构的影响。建立了一个正二十面体的Au团簇和AB堆积的石墨载体,通过记录每一个状态的结构来研究团簇的熔化过程。模拟结果表明,随着温度的升高,Au原子从外到内,逐层熔化,形成二维岛状结构。Au与石墨载体之间的相互作用使得Au原子单层分散在石墨表面,相互作用越强,金属原子越靠近载体。  相似文献   

5.
王金刚  汤儆  陈招斌  毛秉伟 《电化学》2006,12(4):357-362
STM“Jump-to-contact”针尖诱导表面纳米构筑是目前水溶液中具有最高分辨率的一种表面纳米构筑技术.然而,一些金属因其具有较高的内聚能而难以发生针尖原子向表面的转移,限制了该技术的广泛应用.本文建立了以STM构筑-置换两步法获得不能直接利用“Jump-to-contact”原理进行构筑的金属表面纳米团簇阵列,利用STM针尖“Jump-to-contact”诱导在Au(111)表面构筑Cu纳米团簇阵列,然后通过Pt-Cu置换的方法,制备出Au(111)表面的Pt纳米团簇阵列.  相似文献   

6.
金纳米团簇(gold nanoclusters,Au NCs)是一种新型的荧光纳米材料,由几个到几百个原子组成,尺寸接近于电子的费米波长。由于量子尺寸效应,金纳米团簇显示出独特的光学特性。荧光金纳米团簇具有尺寸小、水溶性好、光物理性质好、比表面积大、表面易于修饰以及荧光性质随尺寸可调等优点,是近年来的研究热点。通过改变配体或者生物支架合成的各种荧光金纳米团簇,在传感检测、纳米标记、医学成像和光电子学等领域具有潜在的应用前景。作为新型荧光探针,荧光金纳米团簇已成功用于对阳离子、阴离子及重要的生物活性物质如过氧化氢、葡萄糖、谷胱甘肽、三磷酸腺苷、氨基酸等小分子化合物的检测。本文结合当前的研究现状,介绍了金纳米团簇在小分子化合物荧光检测中的应用,并简要评述了金纳米团簇研究中所面临的挑战及应用前景。  相似文献   

7.
刘凯梵  李宗军  陈卫 《分析化学》2022,50(4):593-601
通过电化学催化过程将二氧化碳(CO2)还原为有用的燃料和化学品是目前降低CO2排放量以及高效利用CO2的主要方式之一.金纳米团簇(Au NCs)因其结构明确、原子级尺寸精确和高表面活性而被认为是CO2电化学还原反应(CO2RR)的良好催化材料和模型催化剂.本研究可控合成了两种金纳米团簇Au24 NCs和Au25 NCs...  相似文献   

8.
杨丹  祝艳 《催化学报》2021,42(2):245-250,后插1-后插5
近年来,由有机配体保护的原子精确金属团簇在合成方面已取得了重要进展,其独特的原子结构对一些化学反应产生独特的催化效果.原子精确的团簇催化剂明显不同于纳米颗粒催化剂和单原子催化剂,是一种关联均相和多相的、原子数目确定、尺寸均一、结构精确的新型催化剂.从原子尺度上精确构筑团簇催化剂,探究亚纳米尺度的微观结构对催化性能的影响,为常规催化剂所未能解决的关键科学问题提供解决的机会,为在分子尺度上揭示催化作用机制以及准确关联催化剂结构与催化性能提供新的研究体系,具有重要的科学研究意义.本文设计和使用了三种结构精确的金团簇催化剂,即Au25(PPh3)10(SC2H4Ph)5Cl2,Au38(SC2H4Ph)24和Au25(SC2H4Ph)18,分别由二十面体结构的Au13单元通过中心顶点融合、面融合、体相融合形成的(简写为Auvf、Auff和Aubf),详细研究了这三个金团簇催化剂在二十面体Au13单元的结构融合过程中,其催化活性的演变规律.在催化吡咯烷与O2反应制备γ-丁内酰胺反应中,金团簇催化剂的催化活性顺序为Aubf>Auff>Auvf,表明这三个金团簇中Au13单元的结构随着点、面、体的融合,其催化活性随之增加.同时研究发现,对于同一个Au团簇催化剂,其表面硫醇配体的烷基链越短,其催化活性越高,这主要是由于短链硫醇分子的空间位阻较小,吡咯烷分子更容易进入催化剂的金表面,接触到活性位点,进行催化反应.实验表明,三个团簇金原子均带正电荷,正价金物种可能是催化吡咯烷与O2反应的催化活化物种.研究发现,Aubf团簇表面的活性位数目高于Auff和Auvf团簇的,因此Aubf的催化活性最高;同时,团簇表面配体的烷基链越短,其表面活性位数目也越多,这也进一步解释了表面硫醇配体的烷基链越短,其相应的金团簇催化剂的催化活性越高的原因.吡咯烷与O2在金团簇上反应的可能路径为O2在Au活性位上裂解的O原子和吡咯烷β-H转移至Au活性位的β-H反应脱水后形成亚胺,亚胺经过水解进一步氧化得到产物.这项研究将为在原子层次上调变金属团簇催化剂的结构进而改变其催化性能提供新的思路,对精准设计和构筑高效催化剂具有一定的科学指导意义.  相似文献   

9.
用分子动力学方法模拟了银团簇的结构与力能学.计算模拟中使用了一种基于第一性原理的原子间互作用多体势函数.通过分子动力学模拟确定了银微团簇(原子个数3~13)的稳态结构;模拟了原子个数为13~141的银FCC晶体结构理想球形团簇的力能学,发现球形银团簇形成三雏紧密结构;计算了平均结合能,给出了结合能随团簇原子数N的变化图,发现随N增大团簇结合能逐渐接近块材的数值.  相似文献   

10.
AlmN2 (m=1~8)团簇结构与稳定性的DFT研究   总被引:1,自引:0,他引:1  
用密度泛函理论(DFT)的B3LYP方法,在6-31G*水平上对AlmN2(m=1~8) 团簇的几何构型、电子结构、振动频率和热力学性质进行了理论研究. 结果表明, AlmN2团簇的基态结构有两种基本构型, m≤2的结构是以N-N键为核心周围与Al原子相配位形成的; m >2的结构是由两个AlnN(n< m)分子碎片通过共用Al原子或Al-Al键相互结合形成的,这为较快找到AlmN2团簇基态结构提供了一条有效途径. 通过对基态结构能量二次差分的讨论,得到了m为偶数的AlmN2团簇比m为奇数的稳定.  相似文献   

11.
Femtosecond time resolved photoelectron spectroscopy in combination with direct ab initio molecular dynamics "on the fly" based on density functional theory has been used to study the relaxation dynamics of optically excited states in small mass selected anionic gold clusters (Au(n) (-); n = 5-8). The nature of the dynamics strongly depends on the cluster size and structure. Oscillatory wavepacket motion (Au(5)(-)), a long lived excited state (Au(6)(-)), as well as photoinduced melting (Au(7)(-),Au(8)(-)) is observed in real time. This illustrates nonscalable properties of excited states in clusters in the size regime, in which each atom counts.  相似文献   

12.
We report an optimization algorithm for studying bimetallic nanoclusters. The algorithm combines two state-of-the-art methods, the genetic algorithm and the basin hopping approach, widely employed in the literature for predicting structures of pure metallic and nonmetallic clusters. To critically test the present algorithm and its use in determining the lowest-energy structures of bimetallic nanoclusters, we apply it to study the bimetallic clusters Cu(n)Au(38-n) (0< or =n< or =38). It is predicted that the Au atoms, being larger in size than the Cu atoms, prefer to occupy surface sites showing thus the segregating behavior. As the atom fraction of Cu increases, the bimetallic cluster Cu(n)Au(38-n), as a whole, first takes on an amorphous structure and is followed by dramatic changes in structure with the Cu atoms revealing hexagonal, then assuming pentagonal, and finally shifting to octahedral symmetry in the Cu-rich range.  相似文献   

13.
Molecular dynamics simulations in conjunction with MEAM potential models have been used to study the melting and freezing behavior and structural properties of both supported and unsupported Au nanoclusters within a size range of 2 to 5 nm. In contrast to results from previous simulations regarding the melting of free Au nanoclusters, we observed a structural transformation from the initial FCC configuration to an icosahedral structure at elevated temperatures followed by a transition to a quasimolten state in the vicinity of the melting point. During the freezing of Au liquid clusters, the quasimolten state reappeared in the vicinity of the freezing point, playing the role of a transitional region between the liquid and solid phases. In essence, the melting and freezing processes involved the same structural changes which may suggest that the formation of icosahedral structures at high temperatures is intrinsic to the thermodynamics of the clusters, rather than reflecting a kinetic phenomenon. When Au nanoclusters were deposited on a silica surface, they transformed into icosahedral structures at high temperatures, slightly deformed due to stress arising from the Au-silica interface. Unlike free Au nanoclusters, an icosahedral solid-liquid coexistence state was found in the vicinity of the melting point, where the cluster consisted of coexisting solid and liquid fractions but retained an icosahedral shape at all times. These results demonstrated that the structural stability in the structures of small Au nanoclusters can be enhanced through interaction with the substrate. Supported Au nanoclusters demonstrated a structural transformation from decahedral to icosahedral motifs during Au island growth, in contrast to the predictions of the minimum-energy growth sequence: icosahedral structures appear first at very small cluster sizes, followed by decahedral structures, and finally FCC structures recovered at very large cluster sizes. The simulations also showed that island shapes are strongly influenced by the substrate, more specifically, the structural characteristic of a Au island is not only a function of size, but also depends on the contact area with the surface, which is controlled by the wetting of the cluster to the substrate.  相似文献   

14.
The connection between quantum size effects and the surface plasmon resonance of metal nanoclusters is introduced and the pros and cons of in situ and ex situ cluster analysis methods are outlined. A new method for estimating the size of nanoclusters is presented. This method combines core/shell cluster synthesis, UV-visible spectroscopy, and Mie theory. The core/shell approach enables the estimation of metal cluster sizes directly from the UV-visible spectra, even for transition metal nanoclusters such as Pd that have no distinct surface-plasmon peak in UV-visible region. Pd/Au and Au/Pd core/shell clusters as well as Au-Pd alloy clusters are synthesized and used as test cases for simulations and spectroscopic measurements. The results of the simulations and UV-visible spectroscopy experiments are validated with transmission electron microscopy.  相似文献   

15.
Au-Pt bimetallic nanoclusters on a thin film of Al(2)O(3)/NiAl(100) undergo significant structural evolution on variation of the temperature. Au and Pt deposited sequentially from the vapor onto thin-film Al(2)O(3)/NiAl(100) at 300 K form preferentially bimetallic nanoclusters (diameter ≦ 6.0 nm and height ≦ 0.8 nm) with both Au and Pt coexisting at the cluster surface, despite the order of metal deposition. These bimetallic clusters are structurally ordered, have a fcc phase and grow with their facets either (111) or (001) parallel to the θ-Al(2)O(3)(100) surface. Upon annealing the clusters to 400-500 K, the Au atoms inside the clusters migrate toward the surface, resulting in formation of a structure with a Pt core and an Au shell. Annealing the sample to 500-650 K reorients the bimetallic clusters--all clusters have their (001) facets parallel to the oxide surface--and induces oxidation of Pt. Such annealed bimetallic clusters become encapsulated with the aluminium-oxide materials and a few Au remain on the surface.  相似文献   

16.
Effect of particle size on the oxidizability of platinum clusters   总被引:1,自引:0,他引:1  
The catalytic properties of transition metal particles often depend crucially on their chemical environment, but so far, little is known about how the effects of the environment vary with particle size, especially for clusters consisting of only a few atoms. To gain insight into this topic, we have studied the oxygen affinity of free Pt(x) clusters as a function of cluster size (x = 1, 2, 3, 4, 5, and 10) using density functional theory (DFT) calculations (GGA-PW91). DFT-based Nosé-Hoover molecular dynamics has been used to explore the configuration space of the Pt(x)O(x) and Pt(x)O(2x) clusters, leading to the discovery of several novel Pt-oxide structures. The formation of small Pt-oxide clusters by oxidizing the corresponding Pt(x) clusters is found to be significantly more exothermic than the formation of bulk Pt-oxides from Pt metal. The exothermicity generally increases as cluster size decreases but exhibits strongly nonlinear dependence on the cluster size. The nanoclusters are also structurally distinct from the bulk oxides and prefer one- and two-dimensional chain and ringlike shapes. These findings help elucidate the oxidation behavior of Pt nanoclusters and lay the foundation for understanding the reactivity of Pt nanoclusters in oxidizing chemical environments.  相似文献   

17.
First-principle density functional theory is used for studying the anion gold clusters doped with magnesium atom. By performing geometry optimizations, the equilibrium geometries, relative stabilities, and electronic and magnetic properties of [Au(n)Mg]? (n = 1-8) clusters have been investigated systematically in comparison with pure gold clusters. The results show that doping with a single Mg atom dramatically affects the geometries of the ground-state Au(n+1)? clusters for n = 2-7. Here, the relative stabilities are investigated in terms of the calculated fragmentation energies, second-order difference of energies, and highest occupied?lowest unoccupied molecular orbital energy gaps, manifesting that the ground-state [Au(n)Mg]? and Au(n+1)? clusters with odd-number gold atoms have a higher relative stability. In particular, it should be noted that the [Au?Mg]? cluster has the most enhanced chemical stability. The natural population analysis reveals that the charges in [Au(n)Mg]? (n = 2-8) clusters transfer from the Mg atom to the Au frames. In addition, the total magnetic moments of [Au(n)Mg]? clusters exhibit an odd-even oscillation as a function of cluster size, and the magnetic effects mainly come from the Au atoms.  相似文献   

18.
In surface science, much effort has gone into obtaining a deeper understanding of the size-selectivity of nanocatalysts. In this article, electronic and chemical properties of various model catalysts consisting of Au are reported. Au supported by oxide surfaces becomes inert towards chemisorption and oxidation as the particle size became smaller than a critical size (2-3 nm). The inertness of these small Au nanoparticles is due to the electron-deficient nature of smaller Au nanoparticles, which is a result of metal-substrate charge transfer. Properties of Au clusters smaller than ~20 atoms were shown to be non-scalable, i.e., every atom can drastically change the chemical properties of the clusters. Moreover, clusters with the same size can show dissimilar properties on various substrates. These recent endeavours show that the activity of a catalyst can be tuned by varying the substrate or by varying the cluster size on an atom-by-atom basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号