首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Mauriz E  Calle A  Montoya A  Lechuga LM 《Talanta》2006,69(2):359-364
A portable surface plasmon resonance (SPR) optical biosensor device is described as a direct immunosensing system to determine organic pollutants in natural water samples. Monitoring of organochlorine (DDT), organophosphorus (chlorpyrifos) and carbamate (carbaryl) compounds within the concentration levels stipulated by the European legislation, can be accomplished using this immunosensor. The lowest limit of detection (LOD) was obtained for DDT, at 20 ng L−1, whilst 50 ng L−1 and 0.9 μg L−1, were achieved for chlorpyrifos and carbaryl, respectively. Matrix effects were evaluated for the carbaryl immunoassay in different water types with detection limits within the range of carbaryl standard curves in distilled water (0.9-1.4 μg L−1). The covalent immobilization of the analyte derivative through an alkanethiol self-assembled monolayer (SAM) allowed the reusability of the sensor surface during more than 250 regeneration cycles. The quality of the regeneration was proved over a 1-month period of continuous working. The analysis time for a complete assay cycle, including regeneration, comprises 24 min. Our portable SPR-sensor system is already a market product, commercialized by the company SENSIA, SL. The size and electronic configuration of the device allow its portability and utilization on real contaminated locations.  相似文献   

2.
《Analytica chimica acta》2002,471(2):173-186
An automated and versatile sequential injection spectrofluorimetric procedure for the simultaneous determination of multicomponent mixtures in micellar medium without prior separation processes is reported. The methodology is based upon the segmentation of a sample slug between two different buffer zones in order to attain both an improvement of sensitivity and residual minimization for the whole species. Resolution of overlapping fluorescence profiles is achieved using a variable angle scanning technique coupled to multivariate least-squares regression (MLR) algorithms at both sample edges.The potentialities of the described methodology are illustrated with the spectrofluorimetric determination of four widespread pesticides with different acid-base properties; viz. carbaryl (CBL) (1-naphthyl-N-methylcarbamate), fuberidazole (FBZ) (2-(2′-furyl)benzimidazole), thiabendazole (TBZ) (2-(4′-thiazolyl)benzimidazole) and warfarin (W) (3-α-acetonylbenzyl)-4-hydroxycoumarin). Detection limits at the 3σ level were 3.9, 0.02, 0.03 and 10 μg l−1 for CBL, FBZ, TBZ and W, respectively at the maximum sensitivity pH. Dynamic ranges of 13-720 μg l−1 CBL, 0.10-14 μg l−1 FBZ, 0.19-60 μg l−1 TBZ and 0.05-5 mg l−1 W were achieved. Relative standard deviations (n=10) were 0.2% for 100 μg l−1 CBL and 2.4 μg l−1 FBZ, 0.7% for 8 μg l−1 TBZ and 1.0% for 1 mg l−1 W. The proposed automated methodology, which handles 17 samples/h, was validated and applied to spiked real water samples with very satisfactory results.  相似文献   

3.
Dissolved reactive phosphorus (DRP) was determined as orthophosphate (PO4-P) in fresh and saline water samples by flow-injection (FI) amperometry, without and with in-valve column preconcentration. Detection is based on reduction of the product formed from the reaction of DRP with acidic molybdate at a glassy carbon working electrode (GCE) at 220 mV versus the Ag/AgCl reference electrode. A 0.1 M potassium chloride solution was used as both supporting electrolyte and eluent in the preconcentration system. For the FI configuration without preconcentration, a detection limit of 3.4 μg P l−1 and sample throughput of 70 samples h−1 were achieved. The relative standard deviations for 50 and 500 μg P l−1 orthophosphate standards were 5.2 and 5.9%, respectively. By incorporating an ion exchange preconcentration column, a detection limit of 0.18 μg P l−1 was obtained for a 2-min preconcentration time (R.S.D.s for 0.1 and 1 μg P l−1 standards were 22 and 1.0%, respectively). Potential interference from silicate, sulfide, organic phosphates and sodium chloride were investigated. Both the systems were applied to the analysis of certified reference materials and water samples.  相似文献   

4.
《Analytica chimica acta》2003,476(1):141-148
A flow injection (FI) system combined with two photochemical processes is developed for the sensitive and rapid determination of carbaryl. It is based on the on-line photo-conversion of carbaryl into methylamine which subsequently reacts with Ru(bpy)33+ generated through the on-line photo-oxidation of Ru(bpy)32+ with peroxydisulphate. The linear concentration range of application was 0.04-4.0 μg ml−1 of carbaryl, with an R.S.D. of 1.2% (for a level of 0.50 μg ml−1) and a detection limit of 0.012 μg ml−1. The sample throughput was 200 injections per hour. The applicability of the method was demonstrated by determining carbaryl in commercial formulations, water, soil, grain and blood serum.  相似文献   

5.
Dos Santos LB  Abate G  Masini JC 《Talanta》2004,62(4):667-674
This paper presents the optimization of instrumental and solution parameters for determination of atrazine in river waters and formulation by square wave voltammetry (SWV) using a hanging mercury drop electrode. The best sensitivity (35.2±0.4 μA ml μg−1) was achieved using a frequency of 400 Hz and a medium composed of 40 mmol l−1 Britton-Robinson (BR) buffer at pH 1.9. The detection limit was 2 μg l−1 with a linear dynamic range between 10 and 250 μg l−1. Application of the method to real samples of river waters fortified with 10 μg l−1 of atrazine resulted recoveries between 92 and 116%. Additionally, good agreement was observed between results obtained by the proposed method and by HPLC for river water samples spiked with 25 μg l−1 of atrazine. The determination was not affected by the presence of humic acid at concentration of 5 mg l−1, indicating that interactions of the herbicide with this class of compounds are fully labile. The stability of the voltammetric signal for samples spiked with 250 μg l−1 atrazine was evaluated over a period of 14 days in four samples. For two samples, no systematic variation was observed, while for the other two, a decrease of peak current between 3 and 15% occurred, suggesting that the stability is dependent on the sample nature. HPLC analyses suggest formation of deethylatrazine during the second week of storage in the samples for which the SWV peak current had the more intense decrease.  相似文献   

6.
The electrochemical detection of carbaryl at low potentials, in order to avoid matrix interferences, is an important challenge. This study describes the development, electrochemical characterization and utilization of a glassy carbon (GC) electrode modified with multi-wall carbon nanotubes (MWCNT) plus cobalt phthalocyanine (CoPc) for the quantitative determination of carbaryl in natural waters. The surface morphology was examined by scanning electron microscopy, enhanced sensitivity was observed with respect to bare glassy carbon and electrocatalytic effects reduced the oxidation potential to +0.80 V vs. SCE in acetate buffer solution at pH 4.0. Electrochemical impedance spectroscopy was used to estimate the rate constant of the oxidation process and square-wave voltammetry to investigate the effect of electrolyte pH. Square-wave voltammetry in acetate buffer solution at pH 4.0, allowed the development of a method to determine carbaryl, without any previous step of extraction, clean-up, or derivatization, in the range of 0.33-6.61 μmol L−1, with a detection limit of 5.46 ± 0.02 nmol L−1 (1.09 ± 0.02 μg L−1) in water. Natural water samples spiked with carbaryl and without any purification step were successfully analyzed by the standard addition method using the GC/MWCNT/CoPc film electrode.  相似文献   

7.
The pyrethroid lambda-cyhalothrin is a common insecticide which is widespread in the environment. A study of the electrochemical reduction of the pesticide on a hanging mercury drop electrode (HMDE) was performed as basis for the development of a sensitive analytical method for determination of lambda-cyhalothrin in natural samples. Two electrochemical techniques—cyclic voltammetry (CV) and differential pulse voltammetry (DPV)—were applied. The study was performed in the pH range 2-13 using Britton-Robinson (B-R) buffer to control the pH of the measuring solutions and tetrabutylammonium chloride (TBAC) salt as supporting electrolyte. In DPV, a single reduction peak was observed at both pH<4.0 and pH>10.5 while two cathodic peaks were produced in the pH range 4.0-10.5. The results showed that the reduction of lambda-cyhalothrin in the measuring solution is irreversible. The limiting current was found to be diffusion-controlled and free of adsorption of the electroactive species to HMDE over the whole pH range tested. For the analytical DPV method running at pH 2 the relationship between peak current and lambda-cyhalothrin concentration was linear up to 500 μg l−1 (1.1×10−6 mol l−1) with a detection limit of 2.5 μg l−1. The repeatability in terms of relative standard deviation (n=10) was in the order of 3.5% at concentration levels of 5 and 10 μg l−1. A DPV method for determining lambda-cyhalothrin in the agrochemical formulation Karate, spiked soil and well water was developed. The recovery was about 94% in well water and 92% in soil samples at concentration range of 0.05-0.5 μg l−1 and 0.05-0.5 μg g−1, respectively.  相似文献   

8.
The cyclic voltammetric behavior of five common pesticides such as dicofol (DCF), cypermethrin (CYP), monocrotophos (MCP), chlorpyrifos (CPF) and phosalone (PAS) was investigated at a poly 3,4-ethylenedioxythiophene modified glassy carbon electrode (PEDOT/GCE). A method was developed for the detection and determination of these pesticides in trace level flowing stream, based on their redox behavior. The square wave stripping voltammetric principle was used to analyze the selected pesticides on PEDOT/GCE. Varying the accumulation potential and accumulation time, the best accumulation conditions were found out. Effects of initial scan potential, square wave pulse amplitude, step potential and frequency were examined for the optimization of stripping conditions. The peak current responses of analyte under optimum conditions were correlated over flow rate by using wall-jet PEDOT/GCE assembly. The calibration plots were linear over the pesticide's concentration range 0.10-72.60 μg l−1 for DCF, 0.41-198.24 μg l−1 for CYP, 0.22-220.95 μg l−1 for MCP, 0.35-259.69 μg l−1 for CPF and 1.07-141.46 μg l−1 for PAS. The limit of detection was obtained between <0.09 and <1.0 μg l−1 for five pesticides. It is low enough for trace pesticide determination in real samples. This method is applied for the determination of the five pesticides in soil samples. The recovery values obtained in spiked soil samples are 95.4 ± 5.4% for DCF, 93.7 ± 4.2% for CYP, 85.3 ± 8.4% for MCP, 94.6 ± 6.6% for CPF and 93.5 ± 4.9% for PAS.  相似文献   

9.
A general and broad class selective enzyme-linked immunosorbent assay was developed for the type II pyrethroid insecticides, such as cypermethrin, deltamethrin, cyhalothrin, cyfluthrin, fenvalerate, esfenvalerate and fluvalinate. Polyclonal antibodies were generated by immunizing with a type II pyrethroid immunogen ((RS)-α-cyano-3-phenoxybenzyl (RS)-cis,trans-2,2-dimethyl-3-carboxyl-cyclopropanecarboxylate) conjugated with thyroglobulin. Antisera were screened against nine different coating antigens. The antibody-antigen combination with the most selectivity for type II pyrethroids such as cypermethrin was further optimized and tested for tolerance to co-solvent, pH and ionic strength changes. The IC50s of the optimized immunoassay were 78 μg l−1 for cypermethrin, 205 μg l−1 for cyfluthrin, 120 μg l−1 for cyhalothrin, 13 μg l−1 for deltamethrin, 6 μg l−1 for esfenvalerate, 8 μg l−1 for fenvalerate and 123 μg l−1 for fluvalinate. No cross-reactivity was measured for the type I pyrethroids such as permethrin, bifenthrin, phenothrin, resmethrin and bioresmethrin. This assay can be used in monitoring studies to distinguish between type I and II pyrethroids.  相似文献   

10.
Isoproturon was extracted selectively from environmental materials (water samples) using an immunosorbent column containing anti-isoproturon antibodies encapsulated in a silica matrix by a sol-gel process. A phosphate buffered saline (PBS) conditioned immunosorbent column was used to on-line preconcentrate 5 ml well and tap water containing 0.05 μg l−1 of isoproturon, which were desorbed with 75 μl of citric acid and determined with a solid phase competitive fluoroimmunoassay. The solid phase of the immunosensor, consisting of a sol-gel glass doped with anti-isoproturon monoclonal antibody, was placed on the flow-cell of the spectrofluorometer. Free isoproturon in solution competed with a fluorescent conjugated isoproturon and reduced the support bonded fluorescence in a concentration-dependent manner. The on-line method has a detection limit of 9.7 ng l−1, relative standard deviation of 4 and 3% for 0.05 and 0.5 μg l−1, respectively, and recoveries higher than 90% for tap and well water. For comparison the off-line extraction and clean up using a C18 cartridge is also reported.  相似文献   

11.
A sensitive and selective method was developed for the determination of traces of manganese in urine using on-line electrochemical preconcentration followed by flame atomic absorption spectrometry detection. A home made flow-through polypropylene cell (4.5 cm long × 0.8 cm diameter filled with glass marbles) with an effective inner volume of 0.5 ml containing a working and a counter electrode, both of glassy carbon and a Pt pseudo reference electrode was located in a flow injection manifold specially designed for the purpose of this work. The manganese was deposited from buffer solution of NH3/NH4Cl at pH 9.00 through an oxidizing process at a current of 400 mA during 7 min. A flow of HCl 0.1 mol l−1 at 4 ml min−1 through the cell, chemically dissolved the deposit. A small portion (15 μl) of the concentrate was introduced in a continuously flowing system by means of a timing device and was then carried to the detector for the manganese quantification. All electrochemical and spectroscopic variables as well as possible interferences in both systems were systematically studied. The relative standard deviations for ten consecutive measurements of manganese solutions of 2.0 and 20 μg l−1 were of 2.3 and 1.5%, respectively, while for a sample processed five times was less then 5%. The accuracy of the developed procedure was evaluated by adding known amounts of manganese standard to urine samples and following the whole procedure. Recoveries within the range 97.2-102.8% were obtained. To further prove the accuracy, a Seronorm Trace Elements in Urine, Batch 403125 sample with a reported concentration of 13 μg Mn l−1 was also analyzed. The experimental value obtained was of 12.7 ± 0.1 μg l−1, which does not differ significantly from the reported amount (p < 0.05). A preconcentration factor of 40, a linear range between 0.015 and 60 μg l−1 and a limit of detection of 15 ng l−1 permitted the determination of manganese in real urine samples from non-exposed subjects in the range 0.5-2.8 μg l−1.  相似文献   

12.
Headspace solid phase microextraction (HS-SPME) was investigated as a solvent-free alternative method for the extraction and determination of 4-ethylphenol (EP) and 4-ethylguaiacol (EG) in red wine by capillary gas chromatography with flame ionization detection (FID) and compared to liquid-liquid extraction.For HS-SPME, better results were obtained with saturated sodium chloride samples, at 55 °C, using a 85 μm polyacrylate fiber. An absorption time of 40 min was needed to reach the absorption equilibrium for EG. This 40-min duration corresponds to the beginning of EP equilibrium and was selected for the experiments. In these conditions, the calibration graphs were linear in the range 5-5000 μg l−1 and the sensitivity was nearly the same for the two compounds. The detection limits were in the low μg l−1 range. In model wine solutions, result obtained with the liquid-liquid extraction method exhibit a linear calibration between 25 and 10,000 μg l−1 with a detection limit of 1 μg l−1, but, the relative standard deviations of the EP and EG result in the low concentration range (<50 μg l−1) are higher than those obtained by HS-SPME (15% compared to 2% for EP and 12% compared to 5% for EG). Taking into account the numerous volatile compounds in wine, HS-SPME is a rapid and valid alternative technique for use in the determination of ethylphenols at trace levels.  相似文献   

13.
The operational characteristics of a novel poly(tetrafluoroethylene) (PTFE) bead material, granular Algoflon®, used for separation and preconcentration of metal ions via adsorption of on-line generated non-charged metal complexes, were evaluated in a sequential injection (SI) system furnished with an external packed column and in a sequential injection lab-on-valve (SI-LOV) system. Employed for the determination of cadmium(II), complexed with diethyldithiophosphate (DDPA), and detection by electrothermal atomic absorption spectrometry (ETAAS), its performance was compared to that of a previously used material, Aldrich PTFE, which had demonstrated that PTFE was the most promising for solid-state pretreatments. By comparing the two materials, the Algoflon® beads exhibited much higher sensitivity (1.6107 μg l−1 versus 0.2956 μg l−1 per integrated absorbance (s)), and better retention efficiency (82% versus 74%) and enrichment factor (20.8 versus 17.2), although a slightly smaller linear dynamic range (0.05-0.25 μg l−1 versus 0.05-1.00 μg l−1). Moreover, no flow resistance was encountered under the experimental conditions used. The results obtained on three standard reference materials were in good agreement with the certified values.  相似文献   

14.
A flow system was coupled to a graphite furnace with a platform coated with tungsten-rhodium permanent chemical modifier for in-line separation and preconcentration of copper by employing a minicolumn loaded with 1-(2-tiazolylazo)-2-naphthol (TAN) immobilized on C18-bonded silica fixed in the tip of the autosampler arm. Elution was made by sampling 35 μl of 0.50 mol l−1 HCl with further delivering into a coated platform. Remarkable improvements in both selectivity and sensitivity were observed. Copper(II) was effectively separated from solutions containing up to 20 g l−1 Na+; 10 g l−1 K+, Ca2+ and Mg2+; 1.0 g l−1 Fe3+ and Zn2+. For a sample flowing at 3.0 ml min−1 and a loading of 60 s, the detection limit was estimated as 5 ng l−1 Cu(II) at the 99.7% confidence level, and an enrichment factor of 33 was calculated. Coefficient of variation was estimated as 4% for a 0.30 μg l−1 copper solution (n=20). The W-Rh permanent chemical modifier was used to improve system stability, analytical performance and atomizer lifetime. More than 1500 firings were carried out with the same atomizer without significant variations in sensitivity and precision. On account of the reagent immobilization, its consumption was lower than 0.2 μg per determination. In addition, TAN purification was unnecessary.  相似文献   

15.
Graphene nanosheets, dispersed in Nafion (Nafion-G) solution, were used in combination with in situ plated bismuth film electrode for fabricating the enhanced electrochemical sensing platform to determine the lead (Pb2+) and cadmium (Cd2+) by differential pulse anodic stripping voltammetry (DPASV). The electrochemical properties of the composite film modified glassy carbon electrode were investigated. It is found that the prepared Nafion-G composite film not only exhibited improved sensitivity for the metal ion detections, but also alleviated the interferences due to the synergistic effect of graphene nanosheets and Nafion. The linear calibration curves ranged from 0.5 μg L−1 to 50 μg L−1 for Pb2+ and 1.5 μg L−1 to 30 μg L−1 for Cd2+, respectively. The detection limits (S/N = 3) were estimated to be around 0.02 μg L−1 for Pb2+ and Cd2+. The practical application of the proposed method was verified in the water sample determination.  相似文献   

16.
A simple method for the rapid and simultaneous analysis of dichlorvos (DDVP), malathion, carbaryl, and 2,4-dichlorophenoxy acetic acid (2,4-D) in citrus fruit, which uses flow-injection ion spray ionization tandem mass spectrometry, has been developed for the first time. The method involves the combined use of stable isotopically labeled internal standards (DDVP-d6, malathion-d10, carbaryl-d7, and 2,4-D-d5) and a multiple reaction monitoring technique. The average recoveries for the pesticides at the same concentrations as their tolerance levels (DDVP: 0.1-0.2 μg g−1; malathion: 0.5-4.0 μg g−1; carbaryl: 1.0 μg g−1; 2,4-D: 1.0-2.0 μg g−1) ranged from 90 to 119% with the relative standard deviation (R.S.D.) ranging from 1.0 to 13.1% (n = 5). Analysis time, including sample preparation and determination, was only 15 min. The present method is effective for screening DDVP, malathion, carbaryl, and 2,4-D in citrus fruit.  相似文献   

17.
An automated system to perform liquid-liquid extraction is proposed, in which the effective mixture (the intimate contact) between the aqueous phase and the organic phase, as well as the separation of the phases, are carried out in a micro-batch glass extraction chamber. Sample, reagents and organic solvent are introduced into the glass extraction chamber by a peristaltic pump using air as carrier. The detection of the extracted species from the aqueous phase is made in a small volume (120-150 μl) of isobutyl methyl ketone (MIBK). The system allows enrichment factors of 2-10-fold. The proposed automatic system was evaluated for Cu(II) extraction based on complex formation between copper(II) and 1-(2′-pyridylazo)naphthol (PAN) in MIBK. When a volumetric ration of 2:1 (aqueous:organic) was implemented, copper was detected in the concentration range of 100-1600 μg l−1 (r = 0.9995) with a relative standard deviation of 2% (200 μg l−1, n = 5) and a detection limit of 20 μg l−1. The analytical curve was linear over the concentration range 25-500 μg l−1 (r = 0.9994) when a volumetric ratio of 10:1 was employed. With this ratio, the detection limit was 5.0 μg l−1 and the relative standard deviation was 6% (50 μg l−1, n = 5).  相似文献   

18.
Ochratoxin A (OTA) is a mycotoxin (potentially carcinogenic secondary metabolite derived from fungal contamination), produced by some Aspergillus and Penicillium strains. Although present and legislated in different food sources in the human diet, the regulation for wine intake is still under discussion. The Office International de la Vigne et du Vin (OIV) recommended maximum levels in wine of 2 μg l−1. Some reports refer to OTA contamination in wines up to 15 μg l−1 and a special incidence in red wines from the southern regions of Europe and the north of Africa, but the majority of the data available are below 1 μg l−1. When working at such low concentrations, the problem of the uncertainty of the results becomes decisive towards the implementation of legal limits. In order to assess the global uncertainty associated with OTA determination in wines and widen the data set and knowledge of the situation in Portugal, 340 wines were analysed (189 Port Wine, 85 Vinho Verde and 66 wines from other regions in the country) by a high performance liquid chromatography (HPLC)-fluorescence detection (FD) method using immunoaffinity columns for clean up. OTA was detected in 69 wines by the method used, but in concentrations below 0.5 μg l−1, except for two which showed levels up to a maximum of 2.1 μg l−1. However, the global uncertainty for OTA is close to 37% for concentrations above 0.5 μg l−1, and therefore, such value can be below or exceed the OIV limit. In the vicinity of the limit of detection, 0.084 μg l−1, the global uncertainty rises exponentially to a maximum of about 70%. This can be an obstacle when discussing safety intake limits. Ethanol and glucose content did not interfere in the clean up of OTA by immunoaffinity columns.  相似文献   

19.
In this study, a simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME) combined gas chromatography-electron capture detection (GC-ECD), for the determination of chlorobenzenes (CBs) in water samples, has been described. This method involves the use of an appropriate mixture of extraction solvent (9.5 μl chlorobenzene) and disperser solvent (0.50 ml acetone) for the formation of cloudy solution in 5.00 ml aqueous sample containing analytes. After extraction, phase separation was performed by centrifugation and the enriched analytes in sedimented phase were determined by gas chromatography-electron capture detection (GC-ECD). Our simple conditions were conducted at room temperature with no stiring and no salt addition in order to minimize sample preparation steps. Parameters such as the kind and volume of extraction solvent, the kind and volume of disperser solvent, extraction time and salt effect, were studied and optimized. The method exhibited enrichment factors and recoveries ranging from 711 to 813 and 71.1 to 81.3%, respectively, within very short extraction time. The linearity of the method ranged from 0.05 to 100 μg l−1 for dichlorobenzene isomers (DCB), 0.002-20 μg l−1 for trichlorobenzene (TCB) and tetrachlorobenzene (TeCB) isomers and from 0.001 to 4 μg l−1 for pentachlorobenzene (PeCB) and hexachlorobenzene (HCB). The limit of detection was in the low μg l−1 level, ranging between 0.0005 and 0.05 μg l−1. The relative standard deviations (R.S.D.s) for the concentration of DCB isomers, 5.00 μg l−1, TCB and TeCB isomers, 0.500 μg l−1, PeCB and HCB 0.100 μg l−1 in water by using the internal standard were in the range of 0.52-2.8% (n = 5) and without the internal standard were in the range of 4.6-6.0% (n = 5). The relative recoveries of spiked CBs at different levels of chlorobenzene isomers in tap, well and river water samples were 109-121%, 105-113% and 87-120%, respectively. It is concluded that this method can be successfully applied for the determination of CBs in tap, river and well water samples.  相似文献   

20.
A simple and robust time-based on-line sequential injection system for trace mercury determination via cold vapour atomic absorption spectrometry (CVAAS), employing a new integrated gas-liquid separator (GLS), which in parallel operates as reactor, was developed. Sample and reductant are sequentially loaded into the GLS while an argon flow delivers the released mercury vapour through the atomic absorption cell. The proposed method is characterized by the ability of successfully managing variable sample volume up to 30 ml in order to achieve high sensitivity. For 20 ml sample volume, the sampling frequency is 25 h−1. The calibration curve is linear over the concentration range 0.05-5.0 μg l−1 of Hg(II), the detection limit is cL = 0.02 μg l−1, and the relative standard deviation is sr = 2.6% at 1.0 μg l−1 Hg(II) level. The performance of the proposed method was evaluated by analyzing certified reference material and applied to the analysis of natural waters and biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号