首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present work, a novel approach is proposed for the simultaneous determination of three widely used pesticides (namely, fuberidazole (FBZ), carbaryl (CBL) and benomyl (BNM)). The proposed method is based on a single continuous-flow solid surface fluorimetric multi-optosensor implemented with the use of a minicolumn placed just before the flow-through cell and filled with C18 silica gel. The three pesticides are determined from an only injection (simultaneous determination): the minicolumn strongly retains two of them while the third develops a transitory signal when passing through the sensing solid microzone. Then, two alternate eluting solutions appropriately selected perform the sequential elution of the two pesticides from the minicolumn, achieving the detection zone and developing their transitory signals. The proposed optosensor works under optimal sensitivity conditions for all the three analytes because of the use of multi-wavelength fluorescence detection mode, so recording three different signals corresponding at three pairs of optima excitation/emission wavelengths. Using a sample volume of 2100 μl, the system was calibrated in the range 0.5-15, 40-800 and 50-1000 μg l−1 with detection limits of 0.09, 6 and 9 μg l−1 for FBZ, CBL and BNM, respectively. The R.S.D values (n=10) were lower than 2% in all cases. The proposed methodology was applied satisfactorily to water samples. Recovery percentages ranging from 97.8 to 101.1%, 97.9 to 103% and from 97 to 105% for FBZ, CBL and BNM, respectively, were obtained.  相似文献   

2.
Myo-inositol hexakisphosphate (phytate) is a substance present in urine with an important role in preventing calcium renal calculi development. In spite of this, the use of urinary phytate levels on stone-formers’ evaluation and treatment is still notably restricted as a consequence of the enormous difficulty to analyze this substance in urine. In this paper, a simple procedure for routinary urinary phytate determination based on phosphorus determination through inductively coupled plasma atomic emission spectrometry is described.The method only requires a previous separation of phytate from other components by column anion exchange chromatography. The working linear range used was 0-2 mg l−1 phosphorus (0-7 mg l−1 phytate). The limit of detection was 64 μg l−1 of phytate and the limit of quantification was 213 μg l−1. The relative standard deviation (R.S.D.) for 1.35 mg l−1 phytate was 2.4%. Different urine samples were analyzed using an alternative analytical methodology based on gas chromatography (GC)/mass detection used for inositol determination (phytate was previously hydrolyzed), resulting both methods comparable using as criterion to assess statistical significance P<0.05.  相似文献   

3.
Ohno S  Teshima N  Sakai T  Grudpan K  Polasek M 《Talanta》2006,68(3):527-534
A sequential injection (SI) method in a lab-on-valve (LOV) format for simultaneous spectrophotometric determination of copper and iron has been devised. The detection chemistry is based on the complex formation of 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]aniline (5-Br-PSAA) with copper(II) and/or iron(II) at pH 4.6. Copper(II) reacts with 5-Br-PSAA to form the complex which has an absorption maximum at 580 nm but iron(III) does not react. In the presence of a reducing agent only iron(II)-5-Br-PSAA complex is formed and detected at 558 nm. Under the optimum experimental conditions, the determinable ranges are 0.1-2 mg l−1 for copper and 0.1-5 mg l−1 for iron, respectively, with a sampling rate of 18 h−1. The limits of detection are 50 μg l−1 for copper and 25 μg l−1 for iron. The relative standard deviations (n = 15) are 2% for 0.5 mg l−1 copper and 1.8% for 0.5 mg l−1 iron when determined in standard solutions. The recoveries range between 96 and 105% when determining 0.25-2 mg l−1 of copper and 0.2-5 mg l−1 of iron in artificial mixtures at copper/iron ratios of 1:10 to 5:1. The proposed SI-LOV method is successfully applied to the simultaneous determination of copper and iron in multi-element standard solution and in industrial wastewater samples.  相似文献   

4.
A.S. Alves Ferreira 《Talanta》2007,72(3):1223-1229
This paper deals on the determination of Strychnine, a potent and dangerous pesticide and the analytical procedure is based on the photo-induced chemiluminescence of the pesticide by means of the Multicommutation continuous-flow methodology. Small segments of the pesticide solution were sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. The required time of UV irradiation was obtained by stopped-flow during 150 s; then, the resulting solution formed alternated segments with the oxidizing solution containing 5 × 10−3 mol l−1 Ce(IV) in 0.6 mol l−1 nitric acid. The calibration range, from 2 μg l−1 to 50 mg l−1, resulted in a linear behaviour over the range 25 μg l−1 to 20 mg l−1 and fitting the equation: I = 4706x + 624 with a correlation coefficient of 0.9955. The limit of detection was 2 μg l−1 and the sample throughput 15 h−1. After testing the influence of a large series of potential interferents, the method was applied to different kinds of samples.  相似文献   

5.
Manju Gupta 《Talanta》2007,71(3):1039-1046
The aim of present work was to optimize the experimental parameters in single drop microextraction under solution immersion (SDME) and headspace (HS-SDME) extraction modes for the determination of periodate using guaifenesine [3-(2′-methoxyphenoxy)-1,2-propane diol] and norephedrine (phenylpropanolamine) as new and alternative reagents for the Malaprade reaction. The reactions were complete within 5 min resulting in the formation of 2-(2′-methoxyphenoxy)-acetaldehyde and benzaldehyde, respectively. SDME/HS-SDME of oxidation products with 2 μl of anisole or 1 μl of toluene, respectively, has permitted the determination of periodate at μg l−1 concentration levels. The results indicated that HS-SDME (range 0.01-10 mg l−1, r2 = 0.9990; limit of detection 1.55 μg l−1) was more sensitive than SDME (range 0.05-50 mg l−1, r2 = 0.9984; limit of detection 3.42 μg l−1), and was inexpensive, rapid and convenient. Tolerance of excess of iodate has permitted the application of this method in the determination of ethylene glycol in motor oil; the average recovery on spiked sample was 98.6% with R.S.D. of 4.2%.  相似文献   

6.
The present paper is dealing with an analytical strategy based on coupling photodegradation, chemiluminescence and multicommutation continuous-flow methodology for the determination of the pesticide Propanil, a common herbicide. The pesticide solution is inserted as small segments sequentially alternated with segments of the solution for adjusting the suitable medium for the photodegradation. Both flow-rates (sample and medium) are adjusted to required time for photodegradation, 2.0 min; and then, the resulting solution is also sequentially inserted as segments alternated with segments of the oxidizing solutions system, 1.00 × 10−4 mol l−1 potassium permanganate in 2.00 mol l−1 sulphuric acid medium. The calibration range, from 10 μg l−1 to 25 mg l−1, resulted in a linear behaviour over the range 10 μg l−1-5 mg l−1 and fitting the linear equation: I = 780.30C + 95.28; correlation coefficient 0.9999. The limit of detection was 8 μg l−1 and the sample throughput 20 h−1. After testing the influence of a large series of potential interferents the method is applied to water samples obtained from different places and to one formulation. The method is valid for the determination of other pesticides from the same chemical family, namely: alachlor, flumetsulam, furalaxyl and ofurace. Calibration graphs, limits of detection, repeatability and determination in water samples are obtained for each reported pesticide.  相似文献   

7.
《Analytica chimica acta》2002,455(1):149-157
A time-based multisyringe flow injection procedure with spectrofluorimetric detection is proposed in this paper for the determination of aluminium in drinking water. The flow methodology is based on the simultaneous or sequential injection of sample and chelating reagent (viz. 8-hydroxyquinoline-5-sulphonic acid) plugs using a multicommutation approach so that three successive injections may be performed with a sole displacement of the piston driver bar of the burette. Thus, an injection throughput as high as 154 h−1 is achieved by sampling a 182 μl sample zone. In order to enhance the luminescence, the reaction is carried out in micellar medium using hexadecyltrimethylammonium chloride as surfactant. The influence of geometric and hydrodynamic variables as well as several parameters such as multicommutation timing, ligand and surfactant concentration and reagent pH was assessed.Under the selected working conditions, a linear dynamic range from 10 to 500 μg l−1 Al(III), a 3σ detection limit of 0.5 μg l−1 and a coefficient of variation of 0.6% at the 30 μg l−1 level were obtained. The analytical features were compared with those reported in previous flow injection and sequential injection methods. The multisyringe technique was successfully applied to the determination of aluminium in drinking water at low mineralisation levels, validating the results by inductively coupled plasma atomic emission spectrometry.  相似文献   

8.
An automated system to perform liquid-liquid extraction is proposed, in which the effective mixture (the intimate contact) between the aqueous phase and the organic phase, as well as the separation of the phases, are carried out in a micro-batch glass extraction chamber. Sample, reagents and organic solvent are introduced into the glass extraction chamber by a peristaltic pump using air as carrier. The detection of the extracted species from the aqueous phase is made in a small volume (120-150 μl) of isobutyl methyl ketone (MIBK). The system allows enrichment factors of 2-10-fold. The proposed automatic system was evaluated for Cu(II) extraction based on complex formation between copper(II) and 1-(2′-pyridylazo)naphthol (PAN) in MIBK. When a volumetric ration of 2:1 (aqueous:organic) was implemented, copper was detected in the concentration range of 100-1600 μg l−1 (r = 0.9995) with a relative standard deviation of 2% (200 μg l−1, n = 5) and a detection limit of 20 μg l−1. The analytical curve was linear over the concentration range 25-500 μg l−1 (r = 0.9994) when a volumetric ratio of 10:1 was employed. With this ratio, the detection limit was 5.0 μg l−1 and the relative standard deviation was 6% (50 μg l−1, n = 5).  相似文献   

9.
A general and broad class selective enzyme-linked immunosorbent assay was developed for the type II pyrethroid insecticides, such as cypermethrin, deltamethrin, cyhalothrin, cyfluthrin, fenvalerate, esfenvalerate and fluvalinate. Polyclonal antibodies were generated by immunizing with a type II pyrethroid immunogen ((RS)-α-cyano-3-phenoxybenzyl (RS)-cis,trans-2,2-dimethyl-3-carboxyl-cyclopropanecarboxylate) conjugated with thyroglobulin. Antisera were screened against nine different coating antigens. The antibody-antigen combination with the most selectivity for type II pyrethroids such as cypermethrin was further optimized and tested for tolerance to co-solvent, pH and ionic strength changes. The IC50s of the optimized immunoassay were 78 μg l−1 for cypermethrin, 205 μg l−1 for cyfluthrin, 120 μg l−1 for cyhalothrin, 13 μg l−1 for deltamethrin, 6 μg l−1 for esfenvalerate, 8 μg l−1 for fenvalerate and 123 μg l−1 for fluvalinate. No cross-reactivity was measured for the type I pyrethroids such as permethrin, bifenthrin, phenothrin, resmethrin and bioresmethrin. This assay can be used in monitoring studies to distinguish between type I and II pyrethroids.  相似文献   

10.
A new method is proposed for the chemiluminescent determination of the pesticide 3-indolyl acetic acid by means of an flow injection analysis system. The chemiluminescence emission is obtained by oxidation of the analyte with Ce (IV) in nitric acid and presence of β-cyclodextrine.The continuous-flow method allows the determination of 159 samples h−1 of 3-indolyl acetic acid in an interval of concentrations over the range 0.5-15.0 mg l−1. The limit of detection was 0.1 μg l−1 and the R.S.D. (n, 17) at 2.0 mg l−1 of the pesticide level was 2.7%. The method was applied to water samples.  相似文献   

11.
A new, simple and sensitive spectrofluorimetric method for the determination of salicylic acid (λex = 315 nm, λem = 408 nm) using As(III) as a sensitizing reagent has been investigated by measuring the increase of fluorescence intensity of salicylic acid due to the complexation of As(III)-salicylic acid in presence of sodium dodecyl sulfate (SDS) 10−3 M. Under optimum conditions, a significant relationship was obtained between the fluorescence intensity and salicylic acid concentration. A linear calibration curve was obtained in the range 13.8-13812 μg l−1 with product-moment correlation coefficient (R) 0.99985 and detection limit 4.2 μg l−1. The R.S.D. is 2.35% (n = 5).The method was applied successfully to the determination of salicylic acid in human serum.  相似文献   

12.
The usefulness of the secondary line at 252.744 nm and the approach of side pixel registration were evaluated for the development of a method for sequential multi-element determination of Cu, Fe, Mn and Zn in soil extracts by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). The influence of side pixel registration on the sensitivity and linearity was investigated by measuring at wings (248.325, 248.323, 248.321, 248.329, and 248.332 nm) of the main line for Fe at 248.327 nm. For the secondary line at 252.744 nm or side pixel registration at 248.325 nm, main lines for Cu (324.754 nm), Mn (279.482 nm) and Zn (213.875 nm), sample flow-rate of 5.0 mL min−1 and calibration by matrix matching, analytical curves in the 0.2-1.0 mg L−1 Cu, 1.0-20.0 mg L−1 Fe, 0.2-2.0 mg L−1 Mn, 0.1-1.0 mg L−1 Zn ranges were obtained with linear correlations better than 0.998. The proposed method was applied to seven soil samples and two soil reference materials (IAC 277; IAC 280). Results were in agreement at a 95% confidence level (paired t-test) with reference values. Recoveries of analytes added to soil extracts containing 0.15 and 0.30 mg L−1 Cu, 7.0 and 14 mg L−1 Fe, 0.60 and 1.20 mg L−1 Mn, 0.07 and 0.15 mg L−1 Zn, varied within the 94-99, 92-98, 93-101, and 93-103% intervals, respectively. The relative standard deviations (n = 12) were 2.7% (Cu), 1.4% (Fe - 252.744 nm), 5.7% (Fe - 248.325 nm), 3.2% (Mn) and 2.8% (Zn) for an extract containing 0.35 mg L−1 Cu, 14 mg L−1 Fe, 1.1 mg L−1 Mn and 0.12 mg L−1 Zn. Detection limits were 5.4 μg L−1 Cu, 55 μg L−1 Fe (252.744 nm), 147 μg L−1 Fe (248.325 nm), 3.0 μg L−1 Mn and 4.2 μg L−1 Zn.  相似文献   

13.
《Analytica chimica acta》2004,501(2):193-203
According to the committee decision of 12 August 2002 (2002/657/EC) the capability of detection, CCβ, must be set in all analytical methods not only at concentration levels close to zero but also at the maximum permitted limit (PL). In this work we describe a methodology which evaluates the capability of detection of a fluorescence technique with soft calibration models (bilinear and trilinear PLS) to determine tetracyclines (group B1 substances from annex 1 of Directive 96/23/EC). Its estimation is based on the generalisation of the procedure described in International Union of Pure and Applied Chemistry and in the ISO standard 11843 for univariate signals which evaluates the probabilities of false positive (α) and false negative (β). The capability of detection, CCβ, estimated from the second-order signal and the trilinear PLS model is 9.93 μg l−1 of tetracycline, 17.75 μg l−1 of oxytetracycline and 26.31 μg l−1 of chlortetracycline, setting α and β at 0.05. The capability of detection, CCβ, determined around the PL (100 μg kg−1 in milk and muscle) with the second-order signal is 109.4 μg l−1 of tetracycline, 117.0 μg l−1 of oxytetracycline and 124.9 μg l−1 of chlortetracycline, setting α and β at 0.05. The results were compared with those obtained with zero and first-order signals. The effect of the interferences on the capability of detection was also analysed as well as the number of standards used to build the models and their calibration range.When a tetracycline is quantified in presence of uncalibrated ones by means of the trilinear PLS model the errors oscillate between 14.70% for TC and 9.57% for OTC.  相似文献   

14.
A flow-batch system was developed for the determination of Fe(III) in estuarine waters with high variability in salinity. The method is based on the catalytic effect of iron(III) on the oxidation rate of N,N-dimethyl-p-phenylenediammonium dichloride (DmPD) by hydrogen peroxide and the formed product is spectrophotometrically monitored at 554 nm. A controlled addition of sodium chloride to every assayed sample is accomplished for in-line individual salinity matching.The proposed system processes about 30 samples h−1 and yields reproducible results. Relative standard deviations were estimated as <1.5% after 10 injections of typical samples (10.0-50.0 μg l−1 Fe; ca. 0.5 mol l−1 Cl). Synthetic samples (15.0 μg l−1 Fe; 0.25-1.0 mol l−1 NaCl) were efficiently processed, and no significant differences in results were found at a probability level of 99.7%. The method works for the full range of salinities. Only 120 μg DmPD are consumed per determination. The analytical curve is linear up to about 60 μg l−1 Fe (r>0.999; n=5) and the detection limit is 5 μg l−1 Fe. Results are in agreement with graphite furnace atomic absorption spectrometry.  相似文献   

15.
Tang B  Yue T  Wu J  Dong Y  Ding Y  Wang H 《Talanta》2004,64(4):955-960
A novel fluorescent reagent o-vanillin-8-aminoquinoline(OVAQ) was synthesized, and its infrared spectrum, elemental analysis and acid-base dissociation constants were obtained. The fluorescent reaction of this reagent with Cr(III) was studied. In acetonitrile-water (1:1, (v/v)) medium of pH 6.00, Cr(III) could react with fluorescent reagent OVAQ (λex/em=280/314 nm) to form a 1:1 non-fluorescent complex. The linear range of the spectrofluorimetric method proposed was from 8.2 to 130 μg l−1, and the detection limit was 2.5 μg l−1. The interferences of 25 foreign ions were also studied. This method could be easily performed and was successfully applied to the determination of Cr(III) and total chromium in domestic and industrial waste water samples.  相似文献   

16.
In this study, a simple, rapid and efficient method, dispersive liquid-liquid microextraction (DLLME) combined gas chromatography-electron capture detection (GC-ECD), for the determination of chlorobenzenes (CBs) in water samples, has been described. This method involves the use of an appropriate mixture of extraction solvent (9.5 μl chlorobenzene) and disperser solvent (0.50 ml acetone) for the formation of cloudy solution in 5.00 ml aqueous sample containing analytes. After extraction, phase separation was performed by centrifugation and the enriched analytes in sedimented phase were determined by gas chromatography-electron capture detection (GC-ECD). Our simple conditions were conducted at room temperature with no stiring and no salt addition in order to minimize sample preparation steps. Parameters such as the kind and volume of extraction solvent, the kind and volume of disperser solvent, extraction time and salt effect, were studied and optimized. The method exhibited enrichment factors and recoveries ranging from 711 to 813 and 71.1 to 81.3%, respectively, within very short extraction time. The linearity of the method ranged from 0.05 to 100 μg l−1 for dichlorobenzene isomers (DCB), 0.002-20 μg l−1 for trichlorobenzene (TCB) and tetrachlorobenzene (TeCB) isomers and from 0.001 to 4 μg l−1 for pentachlorobenzene (PeCB) and hexachlorobenzene (HCB). The limit of detection was in the low μg l−1 level, ranging between 0.0005 and 0.05 μg l−1. The relative standard deviations (R.S.D.s) for the concentration of DCB isomers, 5.00 μg l−1, TCB and TeCB isomers, 0.500 μg l−1, PeCB and HCB 0.100 μg l−1 in water by using the internal standard were in the range of 0.52-2.8% (n = 5) and without the internal standard were in the range of 4.6-6.0% (n = 5). The relative recoveries of spiked CBs at different levels of chlorobenzene isomers in tap, well and river water samples were 109-121%, 105-113% and 87-120%, respectively. It is concluded that this method can be successfully applied for the determination of CBs in tap, river and well water samples.  相似文献   

17.
A normal spectrophotometric and a stopped-flow (SF) spectrofluorimetric method have been developed and optimized for the determination of alendronic acid (ALD) in its pharmaceutical formulations. Both methods are automated using the sequential injection analysis (SIA) principle. The spectrophotometric assay is based on the reaction of the analyte with Cu(II) ions in acidic medium to form an UV-absorbing derivative (λmax = 240 nm). The SF spectrofluorimetric method is based on the reaction of ALD with o-phthalaldehyde (OPA) in the presence of 2-mercaptoethanol at basic medium (λex = 340 nm/λem = 455 nm). Linear calibration curves were obtained in the range 1.0-60.0 mg l−1 ALD for the UV method, and in the range 0.13-10.0 mg l−1 ALD for the SF spectrofluorimetric one. The sampling rates were 60 and 30 h−1, respectively. The developed assays are critically compared and their advantages are discussed. Both methods were applied to the analysis of an ALD containing pharmaceutical formulation with satisfactory accuracy and precision.  相似文献   

18.
Yang T  Qin W  Liu W 《Talanta》2004,62(3):451-456
A new bis-Schiff base ligand, bis-(trimethylolaminomethane)-4-tert-butyl-disalicylicimine (HL), was synthesized. The fluorescence intensity of HL-Zn2+ complex was increased by about 8-fold upon addition of β-cyclodextrin (β-CD). The spectrofluorimetric determination of trace amounts of Zn2+ based on the phenomenon was carried out. The excitation and emission wavelengths are 405 and 465 nm, respectively. Under optimal conditions, the fluorescence intensities vary linearly with the concentration of Zn2+ in the range 0-317 μg l−1 with a detection limit of 1.0 μg l−1. The interferences of some inorganic ions were described. The method is a selective, sensitive, rapid, and simple analytical procedure for the determination of Zn2+ in crops. The mechanism for the fluorescence enhancement was also discussed.  相似文献   

19.
In this work, a fully automated flow system exploiting the advantages of the association of multi-pumping, multicommutation, binary sampling and merging zones, to accomplish the sequential determination of copper in serum and urine by flame atomic absorption spectrometry, is described. The developed flow system allowed multiple tasks, such as serum samples preparation (samples and standard solutions viscosity adjustment), serum copper (SCu) measurement, urine copper (UCu) pre-concentration and its subsequent elution and measurement, to be carried out sequentially. The implemented flow manifold presented a modular configuration consisting on two quasi-independent modules, each one accountable for a specific sample manipulation and whose combined operation under computer control enabled the determination of copper in a wide concentrations range.Once optimised and with a sample consumption of about 0.250 mL of serum and 7 mL of urine, the developed flow system allowed linear calibration plots up to 5 mg L−1 with a detection limit of 0.035 mg L−1 for SCu and linear calibration plots up to 300 μg L−1 with a detection limit of 0.67 μg L−1 for UCu. The sampling rate varied according to the module employed and was about 360 determinations h−1 (SCu module), 12 determinations h−1 (UCu module) or 24 determinations h−1 (12 urine and 12 serum samples; UCu and SCu modules simultaneously). Repeatability studies (R.S.D.%, n = 10) showed good precision for UCu at concentrations of 25 μg L−1 (2.54%), 50 μg L−1 (0.90%) and 100 μg L−1 (1.62%) as well as for SCu at concentrations of 0.25 mg L−1 (8.11%), 1 mg L−1 (3.11%) and 5 mg L−1 (0.90%). A comparative evaluation showed a good agreement between the results obtained in the analysis of UCu and SCu (n = 18) by both the developed methodology and the reference procedures. Accuracy was further evaluated by means of the analysis of reference samples (Seronorm™ Trace Elements Urine and Seronorm™ Trace Elements Serum) and the obtained results complied with the certified values.  相似文献   

20.
Dos Santos LB  Abate G  Masini JC 《Talanta》2004,62(4):667-674
This paper presents the optimization of instrumental and solution parameters for determination of atrazine in river waters and formulation by square wave voltammetry (SWV) using a hanging mercury drop electrode. The best sensitivity (35.2±0.4 μA ml μg−1) was achieved using a frequency of 400 Hz and a medium composed of 40 mmol l−1 Britton-Robinson (BR) buffer at pH 1.9. The detection limit was 2 μg l−1 with a linear dynamic range between 10 and 250 μg l−1. Application of the method to real samples of river waters fortified with 10 μg l−1 of atrazine resulted recoveries between 92 and 116%. Additionally, good agreement was observed between results obtained by the proposed method and by HPLC for river water samples spiked with 25 μg l−1 of atrazine. The determination was not affected by the presence of humic acid at concentration of 5 mg l−1, indicating that interactions of the herbicide with this class of compounds are fully labile. The stability of the voltammetric signal for samples spiked with 250 μg l−1 atrazine was evaluated over a period of 14 days in four samples. For two samples, no systematic variation was observed, while for the other two, a decrease of peak current between 3 and 15% occurred, suggesting that the stability is dependent on the sample nature. HPLC analyses suggest formation of deethylatrazine during the second week of storage in the samples for which the SWV peak current had the more intense decrease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号