首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《先进技术聚合物》2018,29(1):160-170
A trifunctional epoxy resin from itaconic acid (TEIA) was synthesized from a renewable resource‐based itaconic acid by allylation of itaconic acid to form diallyl itaconate by using m‐chloroperoxybenzoic acid as oxidizing agents followed by epoxidation of allylic C═C bond of diallyl itaconate methylhexahydropthalic anhydride as curing agent in the presence of 2‐methyl imidazole as a catalyst. The chemical structure of the synthesized resins was confirmed by Fourier transform infrared and nuclear magnetic resonance (1H‐NMR and 13C‐NMR) spectroscopy analysis. The mechanical, thermal, and rheological performances of the TEIA were also investigated and compared with diglycidyl ether of bisphenol A and a plant‐based epoxidized soybean oil bioresin cured with the same curing agent. The higher epoxy value of 1.02, lower viscosity (0.96 Pa s at 25°C), higher mechanical, and higher curing reactivity toward methylhexahydropthalic anhydride of TEIA as compared with epoxidized soybean oil and comparable with diglycidyl ether of bisphenol A demonstrated significant evidence to design and develop a novel bio‐based epoxy resin with high performance to substitute the petroleum‐based epoxy resin.  相似文献   

2.
A novel renewable resource based tri-functional epoxy resin from itaconic acid (TEIA) was blended with petroleum based epoxy resin (DGEBA) and fabricated at different ratios. Then, it was by thermally cured with methylhexahydrophthalic anhydride (MHHPA) in presence of 2-methylimidazole (2-MI) catalyst. The tensile, modulus, strength of virgin epoxy resin (41.97 MPa, 2222 MPa) increased to 47.59 MPa, 2515 MPa, respectively, with the addition of 30% of TEIA. The fracture toughness parameter, critical stress intensity factor (KIC) revealed enhancement of toughness in the TEIA bio-based blends system. The thermomechanical properties of TEIA (tri-functional epoxy resin from itaconic acid) modified petroleum-epoxy networks were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The fracture morphology was also studied by the scanning electron microscopy and atomic force microscopy respectively.  相似文献   

3.
A novel bioresin, epoxidized soybean oil was synthesized by in situ method and was characterized employing FTIR and NMR. The bioresin was blended with epoxy(DGEBA) at different ratios as reactive diluents for improved processibility and toughened nature. The composition with 20 wt% bioresin exhibited improved impact strength to the tune of 60% as compared to virgin epoxy. Fracture toughness parameters critical stress intensity factor(KIC) and critical strain energy release rate(GIC) were evaluated using single edge notch bending test and demonstrated superior enhancement in toughness. Dynamic mechanical, thermal, thermo mechanical and fracture morphological analyses have been studied for bio-based epoxy blends. Curing kinetics has been evaluated through DSC analysis to investigate the effect of bioresin on cross-linking reaction of neat epoxy with triethylenetetramine as curing agent.  相似文献   

4.
To investigate the effect of catalysts on the thermal, rheological, and mechanical properties of an epoxy system, a resin based on diglycidyl ether of bisphenol‐A (DGEBA) was cured by two cationic latent thermal catalysts, N‐benzylpyrazinium hexafluoroantimonate (BPH) and N‐benzylquinoxalinium hexafluoroantimonate (BQH). Differential scanning calorimetry was used for the thermal characterization of the epoxy systems. Near‐infrared spectroscopy was employed to examine the cure reaction between the DGEBA and the latent thermal catalysts used. The rheological properties of the blend systems were investigated under an isothermal condition with a rheometer. To characterize the mechanical properties of the systems, flexure, fracture toughness (KIC), and impact tests were performed. The phase morphology was studied with scanning electron microscopy of the fractured surfaces of mechanical test samples. The conversion and cure activation energy of the DGEBA/BQH system were higher than those of the DGEBA/BPH system. The crosslinking activation energy showed a result similar to that obtained from the cure kinetics of the blend systems. The flexure strength, KIC, and impact properties of the DGEBA/BQH system were also superior to those of the DGEBA/BPH system. This was a result of the substituted benzene group of the BQH catalyst, which increased the crosslink density and structural stability of the epoxy system studied. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 187–195, 2001  相似文献   

5.
The effects of the hyperbranched polyester with hydroxyl end groups (HBPE‐OH) on the curing behavior and toughening performance of a commercial epoxy resin (diglycidyl ether of bisphenol A, DGEBA) were presented. The addition of HBPE‐OH into DGEBA strongly increased its curing rate and conversion of epoxide group due to the catalytic effect of hydroxyl groups in HBPE‐OH and the low viscosity of the blend at curing temperature. The improvements on impact strength and critical stress intensity factor (or fracture toughness, K1c) were observed with adding HBPE‐OH. The impact strength was 8.04 kJ m?1 when HBPE‐OH reached 15 wt% and the K1c value was approximately two times the value of pure epoxy resin when HBPE‐OH content was 20 wt%. The morphology of the blends was also investigated, which indicated that HBPE‐OH particles, as a second phase in the epoxy matrix, combined with each other as the concentration of HBPE‐OH increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
A phosphorus-containing bio-based epoxy resin (EADI) was synthesized from itaconic acid (IA) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). As a matrix, its cured epoxy network with methyl hexahydrophthalic anhydride (MHHPA) as the curing agent showed comparable glass-transition temperature and mechanical properties to diglycidyl ether in a bisphenol A (DGEBA) system as well as good flame retardancy with UL94 V-0 grade during a vertical burning test. As a reactive flame retardant, its flame-resistant effect on DGEBA/MHHPA system as well as its influence on the curing behavior and the thermal and mechanical properties of the modified epoxy resin were investigated. Results showed that after the introduction of EADI, not only were the flame retardancy determined by vertical burning test, LOI measurement, and thermogravimetric analysis significantly improved, but also the curing reactivity, glass transition temperature (T g), initial degradation temperature for 5% weight loss (T d(5%)), and flexural modulus of the cured system improved as well. EADI has great potential to be used as a green flame retardant in epoxy resin systems.  相似文献   

7.
The investigation of the cure kinetics of a diglycidyl ether of bisphenol A (DGEBA)/phenol‐novolac blend system with different phenolic contents initiated by a cationic latent thermal catalyst [N‐benzylpyrazinium hexafluoroantimonate (BPH)] was performed by means of the analysis of isothermal experiments using a differential scanning calorimetry (DSC). Latent properties were investigated by measuring the conversion as a function of curing temperature using a dynamic DSC method. The results indicated that the BPH in this system for cure is a significant thermal latent initiator and has good latent thermal properties. The cure reaction of the blend system using BPH as a curing agent was strongly dependent on the cure temperature and proceeded through an autocatalytic kinetic mechanism that was accelerated by the hydroxyl group produced through the reaction between DGEBA and BPH. At a specific conversion region, once vitrification took place, the cure reaction of the epoxy/phenol‐novolac/BPH blend system was controlled by a diffusion‐control cure reaction rather than by an autocatalytic reaction. The kinetic constants k1 and k2 and the cure activation energies E1 and E2 obtained by the Arrhenius temperature dependence equation of the epoxy/phenol‐novolac/BPH blend system were mainly discussed as increasing the content of the phenol‐novolac resin to the epoxy neat resin. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2945–2956, 2000  相似文献   

8.
Phenyl bisthioureas: 4,4′-(bisthiourea)diphenylmethane (DTM), 4,4′-(bisthiourea)diphenyl ether (DTE), and 4,4′-(bisthiourea)diphenyl sulfone (DTS) were synthesized and used as curing agents for the epoxy resin diglydicyl ether bisphenol A (DGEBA). Synthesized phenyl bisthioureas were characterized using FT-IR and 1H-NMR analysis. For comparison studies the epoxy system was also cured using the conventional aromatic amine 4,4′-diaminodiphenyl ether (DDE). Curing kinetics of epoxy/amine system was studied by dynamic and isothermal differential scanning calorimeter (DSC). Curing kinetic was evaluated based on model-free kinetics (MFK) and ASTM E 698 model, and the activation energy was compared with DDE. Curing system of phenyl bisthiourea link (DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS) shows two exothermic peaks, while that of the conventional aromatic amines showed only a single peak. The initial exothermic peak is due to the primary nitrogen of the thiourea group, and the exotherm at higher temperature is due to the presence of thiourea groups. Glass transition temperature (T g) of DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS cured resins were lowered by 323 K when compared to the widely used diaminodiphenyl ether (DDE) cured resin. Oxidation induction temperature measurement performed on DSC suggests that the DGEBA/DTM, DGEBA/DTE, and DGEBA/DTS system cured resins has better oxidative stability when compared to cured DGEBA/DDE resin system.  相似文献   

9.
Nonaqueous synthesis of nanosilica in diglycidyl ether of bisphenol‐A epoxy (DGEBA) resin has been successfully achieved in this study by reacting tetraethoxysilane (TEOS) directly with DGEBA epoxy matrix, at 80 °C for 4 h under the catalysis of boron trifluoride monoethylamine (BF3MEA). BF3MEA was proved to be an effective catalyst for the formation of nanosilica in DGEBA epoxy under thermal heating process. FTIR and 29Si NMR spectra have been used to characterize the structures of nanosilica obtained from this direct thermal synthetic process. The morphology of the nanosilica synthesized in epoxy matrix has also been analyzed by TEM and SEM studies. The effects of both the concentration of BF3MEA catalyst and amount of TEOS on the diameters of nanosilica in the DGEBA epoxy resin have been discussed in this study. From the DSC analysis, it was found that the nanosilica containing epoxy exhibited the same curing profile as pure epoxy resin, during the curing reaction with 4,4′‐diaminodiphenysulfone (DDS). The thermal‐cured epoxy–nanosilica composites from 40% of TEOS exhibited high glass transition temperature of 221 °C, which was almost 50 °C higher than that of pure DGEBA–DDS–BF3MEA‐cured resin network. Almost 60 °C increase in thermal degradation temperature has been observed during the TGA of the DDS‐cured epoxy–nanosilica composites containing 40% of TEOS. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 757–768, 2006  相似文献   

10.
Hyperbranched epoxy resin (HTDE) has relatively low viscosity and high molecular mass and holds great promise as a functional additive for enhancing the strength and toughness of thermosetting resins. In this work, the curing and thermal degradation kinetics of HTDE/diglycidyl ether of bisphenol-A epoxy (DGEBA) hybrid resin were studied in detail using differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) techniques by Coats–Redfern model. The effect of molecular mass or generation and content of HTME on the activation energy, reaction order, and curing time were discussed; the results indicated that HTDE could accelerate the curing speed and reduce the activation energy and reaction order of the curing reaction.  相似文献   

11.
Cure behaviors of diglycidylether of bisphenol A (DGEBA)/trimethylolpropane triglycidylether (TMP) epoxy blends initiated by 1 wt % N‐benzylpyrazinium hexafluoroantimonate (BPH) as a cationic latent catalyst were investigated using DSC and rheometer. This system showed more than one type of reaction and BPH could be excellent thermal latent catalyst without any co‐initiator. The cure activation energy (Ea) obtained from Kissinger method using dynamic DSC data was higher in DGEBA/TMP mixtures than in pure DGEBA. Rheological properties of the blend system were investigated under isothermal condition using a rheometer. The gel time was obtained from the analysis of storage modulus (G′), loss modulus (G″) and damping factor (tanδ). The crosslinking activation energy (Ec) was also determined from the Arrhenius equation based on the gel time and curing temperature. As a result, the crosslinking activation energy showed a similar behavior with that obtained from Kissinger method. And the gel time decreased with increasing TMP content, which could be resulted from increasing the activated sites by trifunctional epoxide groups and decreasing the viscosity of DGEBA/TMP epoxy blend in the presence of TMP. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2114–2123, 2000  相似文献   

12.
Epoxidized palm oil (EPO) (0–12 wt%) was added into petrochemical-based epoxy blends (diglycidyl ether of bisphenol-A (DGEBA)/cycloaliphatic epoxide resin/epoxy novolac resin) to develop a thermal curable bio-based epoxy system. The thermal behaviors of the EPO, epoxy blends (EB), and bio-based epoxy blends (EB/EPO) were characterized using differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMT) and thermo-mechanical analysis (TM). The glass transition temperature (T g) and storage modulus (E′) of the EB/EPO system was reduced with the increasing of the EPO loading. This is attributed to the plasticizing effect of the EPO. It was found that epoxy blends with higher loading of EPO possessed higher coefficient of thermal expansion (CTE) and tanδ value. This is due to the increase of the free volume and chain flexibility in the three-dimensional network of the epoxy blends. The internal thermal stresses of the EB/EPO were decreased as the increasing loading of EPO, owing to the reduction of crosslink density, modulus of elasticity, and T g in the epoxy blends.  相似文献   

13.
The cure behavior, thermal stability, and mechanical properties of diglycidylether of bisphenol A (DGEBA)/polysulfone (PSF) blends initiated by 1 wt % N‐benzylpyrazinium hexafluoroantimonate as a cationic latent catalyst were investigated. The DGEBA/PSF content was varied within 100/0–100/40 wt %. Latent properties were studied through the measurement of the conversion as a function of the curing temperature, and the cure activation energy (Ea) was studied by the Kissinger method with a dynamic differential scanning calorimetry analysis. The thermal stabilities, largely based on the integral procedural decomposition temperature (IPDT) and decomposed activation energy (Et), were investigated by the measurement of thermogravimetric analysis. For the mechanical properties of the casting specimens, the critical stress intensity factor (KIC) test was performed, and their fractured surfaces were examined with scanning electron microscopy. Ea, IPDT, Et, and KIC increased with PSF increasing in the neat epoxy resin up to 30 wt %. However, there was a marginal decrease in the blend system in both the thermal and mechanical properties due to the phase separation between DGEBA and PSF. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 121–128, 2001  相似文献   

14.
A four-directional benzene-centered aliphatic polyamine, MXBDP, with high functionality and low volatility, is used to cure epoxy resin (DGEBA). Herein we originally report the isothermal cure kinetics and dynamic mechanical properties of DGEBA/MXBDP. Differential scanning calorimetry confirms that MXDBP is more reactive than commercial linear metaxylenediamine and branched Jeffamine T-403 and the isothermal curing reaction is autocatalytic. The Kamal model is found to be able to well describe the curing rate up to the onset of diffusion control, and the excellent match over the whole conversion range is achieved using the extended Kamal model. Interestingly, the isoconversional kinetic analysis indicates that the effective reaction activation energy (E α ) changes substantially with conversion, and ultimately decreases to a very small value (<10 kJ mol?1) because of the diffusion-controlled reaction kinetics. Then, dynamic mechanical analysis reveals that DGEBA/MXBDP exhibits the higher α- and β-relaxation temperatures and the much higher crosslink density than DGEBA/metaxylenediamine. Our experiment results support that MXBDP has the high reactivity and improved thermal resistance in combination with the advantages of the high functionality, low volatility and decreased CO2 absorption. Therefore, MXBDP may be especially suitable for room temperature-cure epoxy coatings and adhesives.  相似文献   

15.
In this work, the latent thermal cationic initiators triphenyl benzyl phosphonium hexafluoroantimonate (TBPH) and benzyl‐2‐methylpyrazinium hexafluoroantimonate (BMPH) were newly synthesized and characterized with IR, 1H NMR, and P NMR spectroscopy. The thermal and mechanical properties of difunctional epoxy [diglycidyl ether of bisphenol A (DGEBA)] resins cured by 1 phr of either TBPH or BMPH were investigated. The DGEBA/TBPH system showed a higher curing temperature and a higher critical stress intensity factor than the epoxy/BMPH system. This could be interpreted in terms of the slow thermal diffusion rate and bulk structure of the four phenyl groups in TBPH. However, the decomposition activation energy derived from the Coats–Redfern method was lower for epoxy/TBPH. This result was probably due to the fact that a broken short‐chain structure was developed by the steric hindrance of TBPH in the difunctional epoxy resin. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2393–2403, 2003  相似文献   

16.
Hexaglycidyl cyclotriphosphazene (HGCP) was synthesized, and characterized by FTIR, 31P, 1H, and 13C-NMR. This compound was used as a reactive flame retardant to blend with commercial epoxy resin DGEBA (Diglycidyl ether of bisphenol A). Its effect on the DGEBA decomposition pathways was characterized by studying both gas and solid phases produced during thermogravimetric analysis (TGA). The gases evolved during TGA in air were studied by means of thermogravimetry coupled with Fourier transform infrared spectroscopy (TG–FTIR), while the solid residues were analysed by FTIR and scanning electron microscopy (SEM). The results showed that HGCP presents a good dispersion in DGEBA, and the blend thermoset with 4,4′-methylene-dianiline (MDA) curing agent leads to a significant improvement of the thermal stability at elevated temperature with higher char yields compared with pure DGEBA thermoset with the same curing agent. Improvement has also been observed in the fire behaviour of blend sample.  相似文献   

17.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

18.
Thermoset/thermoplastic blends were prepared with epoxy–aromatic diamine mixtures and poly(L-lactide) (PLLA), as semicrystalline thermoplastic, in concentrations ranging from 4 to 25 wt.%. In some cases, poly(L,D-lactide) (PDLLA), an amorphous thermoplastic, was used instead for comparative purposes. Diglycidyl ether of bisphenol-A (DGEBA) was employed as epoxy resin and 4,4′-diaminodiphenylmethane (DDM) as curing agent. Phase behavior and morphology were studied during curing at 140 °C. Initially, all blends were homogeneous; however, the curing reaction of the epoxy resin caused a liquid–liquid phase separation. A co-continuous morphology was formed at the beginning of the phase separation in all the considered blend compositions. Blends evolved to a particle/matrix structure or to a phase-inverted structure depending on the initial blend composition. At 140 °C, crystallization only occurred in blends with 16 and 25 wt.% PLLA. This crystallization originates changes in the surface of the epoxy-rich droplets developed with the phase separation.  相似文献   

19.
The present work investigates the improvement in mechanical properties observed for commercially available diglycidyl ethers of bisphenol-A (DGEBA) with the incorporation of a new type of skeletal modified tetra glycidyl epoxy resin TGBAPB as modifier. Varying weight percentages of TGBAPB have been blended with DGEBA and cured with diaminodiphenylmethane (DDM). The chemical structure of TGBAPB was confirmed by FTIR, NMR, and molecular weight determination was carried out by ESI-MS spectroscopic techniques. The thermal properties were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and mechanical properties like tensile strength, flexural strength, impact strength were also studied by universal testing machine (UTM). Scanning electron microscopy (SEM) investigates the morphological behavior of the neat and blend epoxy resins. The results from different studies indicate that the blend epoxy resin system “B” comprising 75% DGEBA/25% TGBAPB has shown improvements in both toughness and stiffness, despite the fact that it is often found that the enhancement of these two properties together in a material cannot be simultaneously achieved. These aspects of this work are novel.  相似文献   

20.
Tryptophan, an amino acid, has been used as a novel, environmentally friendly curing agent instead of toxic curing agents to crosslink the diglycidyl ether of bisphenol A (DGEBA) epoxy resin. The curing reaction of tryptophan/DGEBA mixtures of different ratios and the effect of the imidazole catalyst on the reaction have been evaluated. The optimum reaction ratio of DGEBA to tryptophan has been determined to be 3:1 with 1 wt % catalyst, and the curing mechanism of the novel reaction system has been studied and elucidated. In situ Fourier transform infrared spectra indicate that with the extraction of a hydrogen from NH3+ in zwitterions from tryptophan, the formed nucleophilic primary amine and carboxylate anions of the tryptophan can readily participate in the ring‐opening reaction with epoxy. The secondary amine, formed from the primary amine, can further participate in the ring‐opening reaction with epoxy and form the crosslinked network. The crosslinked structure exhibits a reasonably high glass‐transition temperature and thermal stability. A catalyst‐initiated chain reaction mechanism is proposed for the curing reaction of the epoxy with zwitterion amino acid hardeners. The replacement of toxic curing agents with this novel, environmentally friendly curing agent is an important step toward a next‐generation green electronics industry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 181–190, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号