首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
针对某高氯酸铵/端羟基聚丁二烯(AP/HTPB)推进剂固体火箭发动机,采用两步总包反应描述AP/HTPB的烤燃过程,建立了考虑发动机空腔自然对流的二维轴对称烤燃模型,对加热速率分别为3.6、7.2和10.8 K/h时火箭发动机的慢速烤燃行为进行了数值预测,研究了该火箭发动机的热安全性问题。结果表明,固体火箭发动机空腔内的自然对流对AP/HTPB推进剂的着火温度、着火延迟期和着火位置有一定影响,在热安全性精确分析中不可忽略。3种加热速率下,AP/HTPB推进剂的最初着火位置均出现在药柱肩部的环形区域内,3种加热速率对应的着火延迟期、着火温度及着火时壳体温度分别为30.71、20.06、18.68 h,526.52、528.10、530.64 K,和479.56、496.82、508.77 K。随着加热速率的增大,烤燃响应区域向推进剂与绝热层交界处移动,着火位置的二维截面由椭圆形变为半椭圆形。  相似文献   

2.
为了研究不同药量和升温速率条件下DNAN基熔铸炸药的慢速烤燃特性,自行设计了烤燃实验装置,采用多点测温烤燃实验方法,分别在1和0.055℃/min两种升温速率下进行了不同状态装药量的烤燃实验,分析了熔铸混合炸药的热反应特征。结果表明,装药量和升温速率共同影响烤燃弹的响应特性。相同烤燃弹在0.055℃/min升温速率下比在1℃/min升温速率下加热响应会更剧烈;烤燃弹的放置姿态及端盖厚度会影响烤燃弹的响应剧烈程度。  相似文献   

3.
为了探究受外部不同温度影响下带壳JH-14C传爆药的响应特性,设计了一套慢速烤燃下可测量JH-14C传爆药温度变化和壳体应变的实验装置,获取了不同升温速率下弹体内部温度随时间变化曲线、慢烤响应过程中装药壳体径向应变历程曲线,揭示了带壳JH-14C传爆药的慢速烤燃响应特性,将烤燃实验中弹体径向应变测试结果和炸药反应烈度相关联,提出了一种弹药烤燃实验反应等级的判定方法;基于热力学和装药化学反应,建立了带壳装药烤燃热传导模型和Arrhenius模型,采用BP神经网络反演了JH-14C传爆药热的热反应参数,对不同升温速率下弹体内部的温度场进行了研究。结果表明:升温速率越低,装药的响应温度越高,响应越剧烈;随着升温速率的降低,炸药的点火区域从炸药两端外缘逐渐向炸药内部转移。  相似文献   

4.
不同升温速率下复合药柱烤燃实验与数值模拟研究   总被引:3,自引:0,他引:3  
为了研究不同升温速率下复合炸药JO-9159/JB-9014烤燃实验的热反应规律,建立了复合炸药的烤燃模型,利用有限元程序LS-DYNA3D对不同结构的复合药柱在烤燃过程中的热响应情况进行了数值模拟,并利用实验进行了验证,结果显示模拟结果可信。利用已建立的模型对5 K/h、3 K/min和10 K/min等3种不同升温速率下复合药柱烤燃过程进行了数值模拟,结果表明:升温速率和装药结构的不同对复合药柱的点火时间和位置有较大影响,随着升温速率的增大,点火时间变短,点火位置由药柱的中心处逐渐移至药柱的两端边缘,升温速率较小时,复合药柱的热安定性取决于内部高能炸药的特性,升温速率较大时,复合药柱的热安定性与单一钝感药柱性能近似。因此,只有在较大的升温速率下,钝感炸药内部嵌入高能炸药才能既提高整体药柱的威力,又保证其具有较好的热安定性。  相似文献   

5.
炸药装药尺寸对慢速烤燃响应的研究   总被引:8,自引:0,他引:8  
利用自行研制的烤燃实验装置,选用JB-B、TNT、R852三种炸药,研究探讨了炸药装药尺寸对慢速烤燃响应特性的影响,得出了随着炸药装药尺寸的增大炸药慢速烤燃反应的环境温度和发生反应的剧烈程度都会增大的规律,并对结果进行了分析和讨论。  相似文献   

6.
为了研究底排点火具射流蚀剥作用对底排药柱碎块脱落情况及其燃烧性能的影响,采用半密闭爆 发器实验装置模拟底排弹出膛口瞬态卸压工况,借助高速录像记录点火具点火与底排药柱燃烧的序列图像。 建立底排药柱在半密闭爆发器燃烧的数学模型,计算分析了不同碎块脱落质量引起的平均压力、质量流率和 燃烧时间的变化情况。研究结果表明:蚀剥作用发生在点火具点火初期,导致脱落的底排药剂碎块来不及燃 烧;蚀剥作用主要是强点火射流对底排药柱侵蚀与冲击造成的;碎块总量约占底排药柱初始质量的7%~ 9%,严重影响点火和燃烧的一致性。计算结果与实验值吻合较好。  相似文献   

7.
为进一步探究熔铸炸药在烤燃过程中内部各物理场的变化情况,以B炸药为研究对象,完整地建立了基于Bingham流体模型的B炸药黏度计算模型并应用于慢速烤燃的数值模拟。通过数值模拟得到了B炸药在整个升温过程中上中下3个内部测点处的温度变化曲线并以烤燃试验加以验证,观察了弹体内部温度场与对流场的变化特点。结果表明:升温速率为1 ℃/min时,B炸药相变后逐渐开始流动,内部的温度场分布也随之改变,炸药出现自热反应与最终响应的区域都在弹体上部;升温速率为0.055 ℃/min时,炸药相变后内部很长时间内仍表现出类固相温度场的分布特点,当炸药出现自热反应后,才逐渐开始流动,温度场也逐渐转变为典型的液相温度场,炸药最终响应点在弹体上部,但最早出现自热反应的区域在弹体中心。  相似文献   

8.
炸药装药密度对慢速烤燃响应特性的影响   总被引:3,自引:0,他引:3  
为研究炸药装药密度对烤燃响应剧烈程度的影响,采用以RDX为主的高能炸药压制7种密度水 平的试样,采用长径比为1.26的烤燃弹,以(10.2)℃/min的升温速率作了慢速燃实验。实验结果表明, 当装药密度为理论最大密度的94%时出现压力胀裂,装药密度为理论最大密度的70%时产生爆燃,而在理论 最大密度的80%左右时出现燃烧转爆轰现象,响应最剧烈。  相似文献   

9.
为研究主控点火对复合推进剂慢速烤燃响应特性的影响,设计并开展了典型复合推进剂装药慢速烤燃实验,结合数值计算和推进剂热分解失重及形貌演化过程,探讨了点火前推进剂内的温度分布情况及推进剂细观结构热损伤规律。研究发现:针对复合推进剂装药的慢速烤燃,在推进剂发生自热点火前温度较低时进行主控点火可以有效降低反应剧烈程度;随着加热温度的升高,推进剂中部分组分发生分解,导致推进剂内部温度高于壳体温度,同时推进剂中粘结剂及AP的分解会导致推进剂装药形成多孔状的结构,在点火后更易导致对流燃烧,加剧反应烈度;当壳体温度仅138 ℃时,推进剂温度最高点达到150 ℃,最高点首先出现在靠近喷管的尾部,考虑到粘结剂及AP部分分解导致的孔隙结构会加剧反应的响应烈度,主控点火温度应设定在138 ℃以下。  相似文献   

10.
为了探究热刺激作用下泄压结构对熔铸炸药点火时间及点火前内部物理场变化的影响,设计了有/无泄压结构烤燃弹的内部多点测温慢烤对比试验。基于炸药通用烤燃模型(universal cookoff model, UCM),建立了炸药熔化后受浮升力驱动流动,反应速率随压力、反应进程等变化的B炸药烤燃计算模型,对有/无泄压结构烤燃弹的炸药在升温过程中的温度场及内部压力变化等情况进行了数值模拟,并与试验结果进行比较。结果表明:慢烤条件下,烤燃弹内部压力呈先缓后急上升趋势;有泄压结构烤燃弹在结构作用前的压力变化趋势与无泄压结构的一致,泄压结构的作用会使炸药自热反应速率骤然降低,炸药内部温度下降,自热反应速率降低和产物气泡驱动的对流共同导致了点火时间的延后;由于对流的作用,炸药点火点都在弹体顶部区域。  相似文献   

11.
为探究某新型含铝固体推进剂燃烧特性和规律,在模拟固体发动机的高压条件下,采用可调功率激光器结合高速摄影、发射光谱等光学诊断技术对该新型含铝固体推进剂开展了系统的点火及燃烧过程研究。通过对该推进剂的点火延迟、退移速率、燃烧温度以及团聚物颗粒尺寸的定量测量和分析,明确了该推进剂的点火延迟量级;证实此推进剂的退移速率严格遵循Summerfield燃速公式;判断出其最高燃烧温度高于3 300 K,且随压力增大而升高;通过对燃烧过程中发光凝聚相产物面积的量化分析得出推进剂产物中团聚物粒径尺寸受环境参数的影响规律。  相似文献   

12.
等离子体点火密闭爆发器中火药燃速特性的研究   总被引:4,自引:0,他引:4  
等离子体与火药的作用规律是影响电热化学发射中能量利用效率的关键因素。研制了采用等离子体点火的密闭爆发器实验系统,对单基药在等离子体作用下的燃烧特性进行了研究。结果表明:等离子体点火可以显著缩短火药的点火延滞时间;实现有效点火的电能的最低阈值低于0.05kJ/g;输入电能可以显著增加火药的燃速。等离子体对所用单基药燃速的增强效果仅体现在电脉冲注入期间,但是随着电能输入的增加,逐渐显示出等离子体注入期后火药燃速增强的趋势。  相似文献   

13.
在控制再生式液体发射药火炮燃烧稳定性的背景下,采用挂滴装置和高速摄影系统开展了 HAN基液体发射药 LP1846液滴组内部相互作用对着火、燃烧过程影响的研究。观测了液满间相互作用对它们所经历的四个特征过程的影响。定量测试液滴组平均着火延迟期、着火温度等特性参数与环境温度和液滴中心间距的关系。实验发现:在一定条件下,液滴组将出现聚并现象。最后.建立了一个工程简化模型,理论计算与实验数据吻合较好。这个工作对控制燃烧稳定性和抑制压力振荡有一定的指导意义。  相似文献   

14.
At present, the study of solid-propellant ignition is of particular interest owing to the adoption of hybrid motors [1–3]. The status of experimental and theoretical research in this field can be evaluated on the basis of the rather extensive survey of American papers in [2]. It is noteworthy that a common deficiency in available references is the absence of exact ignition criteria; in most cases the propellant is assumed to have ignited when its surface temperature reaches a prescribed level (gasification temperature), or when the rate at which the temperature increases with time at the propellant surface is sufficiently high. Exact criteria for this rate, however, are not given. In this article, we present ignition criteria for solid propellants and these are based on a diffusion-burning model. It is shown that for a diffusion flame to exist above the propellant surface, two conditions must be satisfied simultaneously: 1) the propellant surface temperature must equal the gasification temperature for that propellant and 2) the temperature gradient at the surface must be smaller than some value which depends on the kinetics of the chemical reaction in the diffusion flame and on the rate of oxidizer input to the propellant surface during burning.Two ignition techniques are examined as examples: ignition by hot gases or radiant heat flow and ignition by means of an active film which reacts with a cold oxidizer; the film is applied to the propellant surface prior to ignition.  相似文献   

15.
模块装药点传火过程中药粒堆积形态对膛内起始压力波特性有重要影响,而模块装药点传火过程中药盒破裂后药粒飞散过程决定了药粒最终堆积形态。为此设计了模块装药可视化点传火模拟试验装置,通过高速摄像系统,观测不同初始装填位置的两模块装药点传火、药盒破裂及药粒散布过程。试验结果表明,两模块初始装填位置远离底火端且两药盒装填间距增大时,药室内传火时间变长,两个模块药盒燃烧更充分,模块盒的破裂面增大。点传火试验结束后,药室内模拟药粒散布在以底火侧端面中心为起点的轴向195~500 mm区域。其中,药粒主要分布于药室右侧陡坡状堆积区域。基于试验建立了模块装药点传火过程中药盒破裂后药粒散布的三维非稳态气固两相流模型,并进行了模拟计算。计算得到的最终药粒散布与试验测得结果基本吻合,验证了模型的合理性。  相似文献   

16.
固体发射药等离子体点火过程及弹道效应分析   总被引:4,自引:0,他引:4  
总结了常规火炮点火的现状,分析了固体药电热化学炮(SPETC)点火的潜在优势,并对等离子体点火过程中存在的燃速增强机理进行了讨论。作为等离子体点火的弹道效应分析,利用电热增强固体药内弹道、等离子体发生器、脉冲功率源三者的耦合编码,计算了不同点火功率、不同毛细管径对SPETC炮弹道性能的影响。  相似文献   

17.
为了研究装置点火延迟时间对不同浓度粉尘爆炸压力和压力上升速率的影响,以铝粉为介质在5L圆柱形爆炸装置中进行系列爆炸实验。结果表明:装置点火延迟时间对铝粉爆炸压力和压力上升速率有十分显著的影响,且存在一个最佳点火延迟时间,此时最大爆炸压力最大;随着铝粉浓度的增加,最佳点火延迟时间先增加后保持不变。最佳点火延迟时间下的最大爆炸压力和最大压力上升速率明显高于点火延迟时间固定为60s时的。相对粉尘不同浓度均采用固定点火延迟时间,不同浓度时采用最佳点火延迟时间,所测得的粉尘最大爆炸压力和最大压力上升速率明显符合实际。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号