首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
磁浮轴承-转子系统非线性动态特性分析   总被引:3,自引:0,他引:3  
考虑非线性电磁力对刚性Jeffcott转子系统的影响,采用Hopf分岔理论及CPNF法对系统平衡点解和周期解进行研究,数值仿真得到系统Jacobi矩阵特征值、轴心轨迹图和Poincare映射图。转子运动呈现Hopf分岔、倍周期分岔及拟周期运动等复杂的非线性动力学特征,其结果可为磁浮轴承-转子系统设计和运行状态控制提供理论依据。  相似文献   

2.
Poincare型胞映射分析方法及其应用   总被引:4,自引:0,他引:4  
本文用Poincare型胞映射方法对平衡及不平.衡轴承转子非线性动力系统的全局特性进行了分析研究,同时求得了一定状态空间内系统存在的周期解及其在各不同Poincare截面上的吸引域,得到了一些新的现象和规律,并通过对平衡及不平衡轴承转子系统的全局特性异同的比较,说明了要建立既适用于平衡轴承转子系统又适用于不平衡轴承转子系统的非线性稳定性准则应注意的几个问题  相似文献   

3.
高朋  侯磊  陈予恕 《力学学报》2021,53(1):248-259
中介轴承作为双转子系统高低压转子重要的支承部件,其内圈和外圈均随着低压转子和高压转子高速旋转, 其传热问题更加突出.本文研究中介轴承在非线性动载荷作用下的非线性热行为.基于双转子系统动力学响应定义中介轴承动载荷,考虑中介轴承的径向游隙、分数指数非线性和参数激励等非线性因素,中介轴承动载荷会出现跳跃和双稳态等非线性行为. 考虑润滑剂的黏温关系,根据Palmgren经验公式建立动载荷作用下中介轴承的热传递模型,通过数值求解得到中介轴承稳态温度,发现动载荷的非线性行为导致中介轴承温度出现跳跃和双稳态等非线性热行为.分析转速比、偏心距、中介轴承径向游隙、Hertz接触刚度和滚子数目对中介轴承温度及非线性热行为的影响,表明偏心距、径向游隙和刚度只影响非线性热行为,而转速比和滚子数目对两者都有重要影响. 本文研究表明,动载荷相较于静载荷更适合描述中介轴承的实际载荷,由于双转子系统具有非线性振动特性, 中介轴承的热行为也表现出复杂的非线性行为.   相似文献   

4.
具有裂纹-碰摩耦合故障转子-轴承系统的动力学研究   总被引:9,自引:0,他引:9  
以非线性动力学和转子动力学理论为基础,分析了带有碰摩和裂纹耦合故障的弹性转子系统的复杂运动,在考虑轴承油膜力的同时构造了含有裂纹和碰摩故障转子系统的动力学模型。针对短轴承油膜力和碰摩-裂纹转子系统的强非线性特点,采用Runge-Kutta法对该系统由碰摩和裂纹耦合故障导致的非线性动力学行为进行了数值仿真研究,发现该类碰摩转子系统在运行过程中存在周期运动、拟周期运动和混沌运动等丰富的非线性现象,该研究结果为转子-轴承系统故障诊断、动态设计和安全运行提供理论参考。  相似文献   

5.
中介轴承作为双转子系统高低压转子重要的支承部件,其内圈和外圈均随着低压转子和高压转子高速旋转,其传热问题更加突出.本文研究中介轴承在非线性动载荷作用下的非线性热行为.基于双转子系统动力学响应定义中介轴承动载荷,考虑中介轴承的径向游隙、分数指数非线性和参数激励等非线性因素,中介轴承动载荷会出现跳跃和双稳态等非线性行为.考虑润滑剂的黏温关系,根据Palmgren经验公式建立动载荷作用下中介轴承的热传递模型,通过数值求解得到中介轴承稳态温度,发现动载荷的非线性行为导致中介轴承温度出现跳跃和双稳态等非线性热行为.分析转速比、偏心距、中介轴承径向游隙、Hertz接触刚度和滚子数目对中介轴承温度及非线性热行为的影响,表明偏心距、径向游隙和刚度只影响非线性热行为,而转速比和滚子数目对两者都有重要影响.本文研究表明,动载荷相较于静载荷更适合描述中介轴承的实际载荷,由于双转子系统具有非线性振动特性,中介轴承的热行为也表现出复杂的非线性行为.  相似文献   

6.
中介轴承作为双转子系统高低压转子重要的支承部件,其内圈和外圈均随着低压转子和高压转子高速旋转, 其传热问题更加突出.本文研究中介轴承在非线性动载荷作用下的非线性热行为.基于双转子系统动力学响应定义中介轴承动载荷,考虑中介轴承的径向游隙、分数指数非线性和参数激励等非线性因素,中介轴承动载荷会出现跳跃和双稳态等非线性行为. 考虑润滑剂的黏温关系,根据Palmgren经验公式建立动载荷作用下中介轴承的热传递模型,通过数值求解得到中介轴承稳态温度,发现动载荷的非线性行为导致中介轴承温度出现跳跃和双稳态等非线性热行为.分析转速比、偏心距、中介轴承径向游隙、Hertz接触刚度和滚子数目对中介轴承温度及非线性热行为的影响,表明偏心距、径向游隙和刚度只影响非线性热行为,而转速比和滚子数目对两者都有重要影响. 本文研究表明,动载荷相较于静载荷更适合描述中介轴承的实际载荷,由于双转子系统具有非线性振动特性, 中介轴承的热行为也表现出复杂的非线性行为.  相似文献   

7.
以灰色预测控制理论为基础,首次将非线性GM模型引入到转子振动主动控制中,并采用现代控制理论中的二次型优化原理,以控制力和响应加权最小为目标函数,设计了转子系统振动的灰色Verhuslt预测优化控制方案。将该方案应用于带电磁阻尼器转子轴承系统的转子振动控制中,仿真结果显示转子振动的灰色预测Verhuslt优化控制是有效的、可行的。  相似文献   

8.
复杂非线性转子—轴承系统动力特性数值分析   总被引:3,自引:0,他引:3  
郑铁生  伍晓红 《力学学报》2001,33(3):377-389
研究非线性高维复杂转子-轴承系统的动力特性。针对系统的局部非线性特征,给出了一种降阶及配套动力积分方法。降阶系统仍保持局部非线性特征,非线性响应数值积分所需的迭代只需在局部非线性的维数上执行。对于油膜力无封闭解的实际轴承,采用变分不等方程有限元法求解Reynolds边值问题,使得油膜力及其Jacobian矩阵的计算变得非常简单明了且与具有协调一致的精度。应用上述方法计算分析了一双跨、椭圆轴承-转子系统的不平衡响应,数值结果展现了系统丰富复杂的非线性现象。  相似文献   

9.
应用有限元法建立偏置转子的计算模型,采用考虑轴承Hertzian接触力和内间隙等非线性因素的二自由度滚动轴承模型,建立了滚动轴承-偏置转子系统的非线性动力学模型.通过数值仿真和实验研究分析了转子系统的非线性动力特性.实验数据和有限元模型计算结果是一致的,证实了所建立滚动轴承-转子系统非线性模型的合理性.发现由于滚动轴承非线性因素的影响,当转速达到系统共振转速的两倍附近时,激起了系统亚谐共振.  相似文献   

10.
目前对于非线性轴承转子系统,仍普遍采用其线性化系统的对数衰减率作为系统的稳定性判据,这造成了理论和实验结果相差较大。本文对[1]中提出的PCM法作了改进,通过对无限长滑动轴承支承对称刚性单盘转子系统的非线性稳定性规律进行的分析,揭示了上述现象的非线性本质,为建立更适用于非线性轴承转子系统的稳定性准则提供参考。  相似文献   

11.
A new monotone finite volume method with second‐order accuracy is presented for the steady‐state advection–diffusion equation. The method uses a nonlinear approximation for both diffusive and advective fluxes that guarantee the positivity of the numerical solution. The approximation of the diffusive flux is based on nonlinear two‐point approximation, and the approximation of the advective flux is based on the second‐order upwind method with proper slope limiter. The second‐order convergence rate for concentration and the monotonicity of the nonlinear finite volume method are verified with numerical experiments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A rotor-active magnetic bearing (AMB) system subjected to a periodically time-varying stiffness with quadratic and cubic nonlinearities under multi-parametric excitations is studied and solved. The method of multiple scales is applied to analyze the response of two modes of a rotor-AMB system with multi-parametric excitations and time-varying stiffness near the simultaneous primary and internal resonance. The stability of the steady state solution for that resonance is determined and studied using Runge-Kutta method of fourth order. It is shown that the system exhibits many typical non-linear behaviors including multiple-valued solutions, jump phenomenon, hardening and softening non-linearities and chaos in the second mode of the system. The effects of the different parameters on the steady state solutions are investigated and discussed also. A comparison to published work is reported.  相似文献   

13.
Based on the Maxwell equations, the nonlinear magneto-elastic vibration equations of a thin plate and the electrodynamic equations and expressions of electro- magnetic forces are derived. In addition, the magneto-elastic combination resonances and stabilities of the thin beam-plate subjected to mechanical loadings in a constant transverse magnetic filed are studied. Using the Galerkin method, the corresponding nonlinear vibration differential equations are derived. The amplitude frequency response equation of the system in steady motion is obtained with the multiple scales method. The excitation condition of combination resonances is analyzed. Based on the Lyapunov stability theory, stabilities of steady solutions are analyzed, and critical conditions of stability are also obtained. By numerical calculation, curves of resonance-amplitudes changes with detuning parameters, excitation amplitudes and magnetic intensity in the first and the second order modality are obtained. Time history response plots, phase charts, the Poincare mapping charts and spectrum plots of vibrations are obtained. The effect of electro-magnetic and mechanical parameters for the stabilities of solutions and the bifurcation are further analyzed. Some complex dynamic performances such as period- doubling motion and quasi-period motion are discussed.  相似文献   

14.
Yabuno  Hiroshi 《Nonlinear dynamics》1997,12(3):263-274
For a parametrically excited Duffing system we propose a bifurcation control method in order to stabilize the trivial steady state in the frequency response and in order to eliminate jump in the force response, by employing a combined linear-plus-nonlinear feedback control. Because the bifurcation of the system is characterized by its modulation equations, we first determine the order of the feedback gain so that the feedback modifies the modulation equations. By theoretically analyzing the modified modulation equations, we show that the unstable region of the trivial steady state can be shifted and the nonlinear character can be changed, by means of the bifurcation control with the above feedback. The shift of the unstable region permits the stabilization of the trivial steady state in the frequency response, and the suppression of the discontinuous bifurcation due to the change of the nonlinear character allows the elimination of the jump in the quasistationary force response. Furthermore, by performing numerical simulations, and by comparing the responses of the uncontrolled system and the controlled one, we clarify that the proposed bifurcation control is available for the stabilization of the trivial steady state in the frequency response and for the reduction of the jump in the nonstationary force response.  相似文献   

15.
The non-linear integro-differential equations of motion for a slender cantilever beam subject to axial narrow-band random excitation are investigated. The method of multiple scales is used to determine a uniform first-order expansion of the solution of equations. According to solvability conditions, the non-linear modulation equations for the principal parametric resonance are obtained. Firstly, The largest Lyapunov exponent which determines the almost sure stability of the trivial solution is quantificationally resolved, in which, the modified Bessel function of the first kind is introduced. Results show that the increase of the bandwidth facilitates the almost sure stability of the trivial response and stabilizes the system for a lower acceleration oscillating amplitude but intensifies the instability of the trivial response for a higher one. Secondly, the first and second order non-trivial steady state response of the system is obtained by perturbation method and the corresponding amplitude–frequency curves are calculated when the bandwidth is very small. Results show that the effective non-linearity of whether the amplitude expectation of the first order steady state response or the amplitude expectation of the second order steady state response is of the hardening type for the first mode, whereas for the second mode the effective non-linearity of whether the amplitude expectation of the first order steady state response or the amplitude expectation of the second order steady state response is of the softening type. Finally, the stochastic jump and bifurcation is investigated for the first and second modal parametric principal resonance. The basic jump phenomena indicate that, under the conditions of system parameters with a smaller bandwidth, the most probable motion is around the non-trivial branch of the amplitude response curve, whereas with a higher bandwidth, the most probable motion is around the trivial one of the amplitude response curve. However, the stochastic jump is sometimes more sensitive to the change of the bandwidth, in other words, a small change of bandwidth may induce a series of stochastic jump and bifurcation.  相似文献   

16.
A rotor- active magnetic bearing (AMB) system with a periodically time-varying stiffness subjected to multi- external, -parametric and -tuned excitations is studied and solved. The method of multiple scales is applied to analyze the response of the two modes of the system near the simultaneous sub-harmonic, super-harmonic and combined resonance case. The stability of the steady state solution near this resonance case is determined and studied applying Lyapunov’s first method. Also, the system exhibits many typical nonlinear behaviors including multi-valued solutions, jump phenomenon, softening nonlinearities. The effects of the different parameters on the steady state solutions are investigated and discussed. Simulation results are achieved using MATLAB 7.0 program.  相似文献   

17.
The near-resonant response of suspended, elastic cables driven by planar excitation is investigated using a two degree-of-fredom model. The model captures the interaction of a symmetric in-plane mode and an out-of-plane mode with near commensurable natural frequencies in a 2:1 ratio. The modes are coupled through quadratic and cubic nonlinearities arising from nonlinear cable stretching. The existence and stability of periodic solutions are investigated using a second order perturbation analysis. The first order analysis shows that suspended cables may exhibit saturation and jump phenomena. The second order analysis, however, reveals that the cubic nonlinearities and higher order corrections disrupt saturation. The stable, steady state solutions for the second order analysis compare favorably with results obtained by numerically integrating the equations of motion.  相似文献   

18.
The paper proposes a stabilization method for a 1/3-order subharmonic resonance with a new type of nonlinear vibration absorber using nonlinear coupling between a main system and the absorber. The main system with nonlinear restoring force and harmonic excitation, i.e., subjected to a sinusoidally changed magnetic force, is introduced as a model which produces a 1/3-order subharmonic resonance. A damped pendulum, whose natural frequency is tuned to be in the neighborhood of twice that of the main system, is connected through a link to the main system as a nonlinear vibration absorber. Theoretical results using the method of multiple scales show that only a stable nontrivial steady state is changed into an unstable one due to the effect of absorber. In addition, we numerically confirm the validity of the proposed absorber using Runge–Kutta method.  相似文献   

19.
In this study, the forced vibration of a curved pipe conveying fluid resting on a nonlinear elastic foundation is considered. The governing equations for the pipe system are formed with the consideration of viscoelastic material, nonlinearity of foundation, external excitation, and extensibility of centre line. Equations governing the in-plane vibration are solved first by the Galerkin method to obtain the static in-plane equilibrium configuration. The out-of-plane vibration is simplified into a constant coefficient gyroscopic system. Subsequently, the method of multiple scales (MMS) is developed to investigate external first and second primary resonances of the out-of-plane vibration in the presence of three-to-one internal resonance between the first two modes. Modulation equations are formed to obtain the steady state solutions. A parametric study is carried out for the first primary resonance. The effects of damping, nonlinear stiffness of the foundation, internal resonance detuning parameter, and the magnitude of the external excitation are investigated through frequency response curves and force response curves. The characteristics of the single mode response and the relationship between single and two mode steady state solutions are revealed for the second primary resonance. The stability analysis is carried out for these plots. Finally, the approximately analytical results are confirmed by the numerical integrations.  相似文献   

20.
The periodic responses of a strongly nonlinear, single-degree-of-freedom forced oscillator with weak excitation and damping are examined. The presented methodology is based on a regular perturbation expansion, whose first term is the solution of the unforced, and undamped nonlinear problem. Higher order approximations are computed by explicitly solving linear differential equations possessing a periodically varying coefficient. The general theory is used for studying the periodic steady state motions of the periodically forced system. Moreover, it is shown that the presented analysis can be used to analytically study the orbital stability of the identified steady state motions. The proposed method can also be used for studying periodic responses due to nonperiodic transient forces, provided that these responses are close to the O(1) periodic generating solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号