首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
在酸性条件下(pH=2~3), 1,4,7,10-四氮杂环十二烷(Cyclen)和氯甲酸苄酯反应, 得到高选择性1,7-二保护Cyclen衍生物1,7-二(苄氧基羰基)-1,4,7,10-四氮杂环十二烷(4), 然后在二异丙基乙胺作用下和化合物1-苄氧基-4-(2-溴乙氧基)苯(2)一锅法有效合成了中间体1,7-二(2-对苄氧基苯氧基)乙基-4,10-二(苄氧基羰基)-1,4,7,10-四氮杂环十二烷(5)和4-(2-对苄氧基苯氧基)乙基-1,7-二(苄氧基羰基)-1,4,7,10-四氮杂环十二烷(6), 在乙醇溶液中经Pd/C催化氢解得到两种新型的用取代苯酚基修饰的Cyclen衍生物1,7-二(2-对羟基苯氧基)乙基-1,4,7,10-四氮杂环十二烷(7)和1-(2-对羟基苯氧基)乙基-1,4,7,10-四氮杂环十二烷(8), 其结构经1H NMR, IR和MS确证. 用单晶X射线衍射法测定了化合物7的晶体结构, 晶体属单斜晶系, C2/c空间群, 晶胞参数a=2.4145(6) nm, b=1.6012(4) nm, c=1.6632(4) nm, αγ=90°, β=120.360(3)°, V=5.5486(6) nm3, Z=8, Dc=1.146 g/cm3, F(000)=2056, μ=0.082 mm-1, R=0.0853, wR=0.2331 [I>2σ(I)].  相似文献   

2.
在浓盐酸水溶液中,碘化N,N-二甲基-1,5-二氮杂环[3.2.1]辛烷([3.2.1-Me2dabco]I2)和碘化1-氨基-1,4-二氮杂环[2.2.2]辛烷([2.2.2-NH2dabco]I)与氯化铜反应得到2种有机-无机杂化铜化合物[3.2.1-Me2dabco][CuCl4](1)和[2.2.2-NH2dabco][CuCl4](2)。X射线单晶结构衍射证实化合物12中的无机阴离子是[CuCl4]2-四面体。化合物12表现出可逆的热致变色现象,随着温度升高,它们的颜色从黄色变为红色,这应该是由[CuCl4]2-四面体的变形引起的。  相似文献   

3.
吴婷  丁坤  伦蒙蒙  张铁  张毅  付大伟 《无机化学学报》2022,38(10):2083-2090
通过采用容易无序的胺,我们合成了2种有机无机杂化晶体,分别为基于bempy (bempy=1-甲基-1-溴乙基吡咯烷阳离子)的溴盐化合物(bempy) Br (1)和镉基溴化物(bempy)2CdBr42),并对其结构相变、介电相变和蓝白荧光进行了详细的表征分析。化合物1在测试温度范围内未观察到可逆相变,化合物2为高温介电相变,介电和差示扫描量热法测试表征其相变温度为357 K。同时,化合物12均具备蓝白光致发光特性,荧光测试表明,化合物12分别在538 nm和547、750 nm处存在发射峰。化合物2具备介电相变和蓝白光致发光的双重特性。  相似文献   

4.
合成得到了2个新的有机-无机杂化化合物{(4-CH3-Bz-4-Ph-Py)[PbI3]}n1)(其中4-CH3-Bz-4-Ph-Py是4-甲基苄基-4-苯基吡啶阳离子)和{(4-CF3-Bz-4-Ph-Py)[PbI3]}n2)(其中4-CF3-Bz-4-Ph-Py是4-三氟甲基苄基-4-苯基吡啶阳离子)。对化合物12进行了元素分析、粉末X射线衍射等表征,并利用X射线单晶衍射测定了它们的单晶结构。化合物1属于正交晶系,P21212空间群;化合物21同构。结构研究表明,化合物12中,铅碘八面体通过共边连接方式,形成[Pb3I9]n三链,有机阳离子填充在无机碘化铅链空隙中。  相似文献   

5.
我们通过精确的分子设计,得到3种1,4-二氮杂二环[2.2.2]辛烷(Dabco)衍生物X-EtHDabco(EtDabco=N-乙基-1,4-二氮杂双环[2.2.2]辛烷,X=H、F、Cl)。分别以3种Dabco衍生物、溴化锌为原料按一定配比反应,成功地合成了一系列新型有机-无机杂化相变材料(H-EtHDabco)[ZnBr4](1)、(F-EtHDabco)[ZnBr4](2)、(Cl-EtHDabco)[ZnBr4](3)。变温X射线单晶结构测定、差式扫描量热法(DSC)及介电测量结果表明:没有卤素取代的1在测试温度范围内并未观察到任何相变,然而卤素取代的化合物2和3均在230 K附近触发了可逆同结构相变。23产生的相变是有机胺阳离子中的卤素取代基在室温相和低温相中的有序-无序转变和无机骨架的相对变形共同引起的。  相似文献   

6.
合成得到了2个新的有机-无机杂化化合物{(4-CH3-Bz-4-Ph-Py)[PbI3]}n1)(其中4-CH3-Bz-4-Ph-Py是4-甲基苄基-4-苯基吡啶阳离子)和{(4-CF3-Bz-4-Ph-Py)[PbI3]}n2)(其中4-CF3-Bz-4-Ph-Py是4-三氟甲基苄基-4-苯基吡啶阳离子)。对化合物12进行了元素分析、粉末X射线衍射等表征,并利用X射线单晶衍射测定了它们的单晶结构。化合物1属于正交晶系,P21212空间群;化合物21同构。结构研究表明,化合物12中,铅碘八面体通过共边连接方式,形成[Pb3I9]n三链,有机阳离子填充在无机碘化铅链空隙中。  相似文献   

7.
采用溶剂热法合成了一系列Zn(Ⅱ)/Cd(Ⅱ)配位聚合物:{[Zn(cbaa)(bpmp)0.5(H2O)]·2H2O}n1)、[Zn(cbaa)(bip)]n2)、[Cd(cbaa)(Hizb)]n3)和[Cd2(cbaa)2(itmb)(H2O)]n4)(H2cbaa=4-羧基苯乙酸;bpmp=1,4-二(4-吡啶甲基)哌嗪;bip=3,5-双(1-咪唑基)吡啶;Hizb=2-(4-咪唑-1-基苯基)-1H-苯并咪唑;itmb=1-(咪唑-1-基)-4-(1,2,4-三唑-1-基甲基)苯)。X射线单晶衍射结果表明,半刚性的4-羧基苯乙酸和富氮辅助配体构筑形成了4个多样化拓扑结构的配位聚合物。化合物12是Zn(Ⅱ)配位聚合物:1是由2个Zn-羧酸盐链之间通过富氮配体桥连形成的一维梯形结构,而2是由Zn-羧酸盐链之间通过富氮配体拓展形成的二维单层结构;化合物34是Cd(Ⅱ)配位聚合物:3是由Cd-O无机链之间通过羧酸配体的桥连拓展形成的二维单层结构,富氮配体作为伸出层平面的悬臂仅仅起到结构修饰作用,而4则形成了Cd-羧酸盐空旷双层结构,富氮配体填充在层内空腔中,从而导致了致密双层结构的产生。另外,考察了4个化合物的热稳定性和光致发光性能。  相似文献   

8.
采用溶剂热法合成了一系列Zn(Ⅱ)/Cd(Ⅱ)配位聚合物:{[Zn(cbaa)(bpmp)0.5(H2O)]·2H2O}n1)、[Zn(cbaa)(bip)]n2)、[Cd(cbaa)(Hizb)]n3)和[Cd2(cbaa)2(itmb)(H2O)]n4)(H2cbaa=4-羧基苯乙酸;bpmp=1,4-二(4-吡啶甲基)哌嗪;bip=3,5-双(1-咪唑基)吡啶;Hizb=2-(4-咪唑-1-基苯基)-1H-苯并咪唑;itmb=1-(咪唑-1-基)-4-(1,2,4-三唑-1-基甲基)苯)。X射线单晶衍射结果表明,半刚性的4-羧基苯乙酸和富氮辅助配体构筑形成了4个多样化拓扑结构的配位聚合物。化合物12是Zn(Ⅱ)配位聚合物:1是由2个Zn-羧酸盐链之间通过富氮配体桥连形成的一维梯形结构,而2是由Zn-羧酸盐链之间通过富氮配体拓展形成的二维单层结构;化合物34是Cd(Ⅱ)配位聚合物:3是由Cd-O无机链之间通过羧酸配体的桥连拓展形成的二维单层结构,富氮配体作为伸出层平面的悬臂仅仅起到结构修饰作用,而4则形成了Cd-羧酸盐空旷双层结构,富氮配体填充在层内空腔中,从而导致了致密双层结构的产生。另外,考察了4个化合物的热稳定性和光致发光性能。  相似文献   

9.
采用水热法合成2种配合物[Pb2(ptcp)2(DDA)](NO32·2H2O(1)和[Co(ptcp)2(DDA)(H2O)]·0.5H2DDA·H2O(2)(ptcp=2-苯基-1H-1,3,7,8-四-氮杂环戊二烯并[l]菲,H2DDA=1,12-十二烷二酸),并采用单晶X-射线衍射、元素分析、红外光谱、X-射线粉末衍射和理论计算对其进行了结构表征。配合物12分别呈现双核和单核结构,通过π-π和氢键作用形成二维和三维结构。此外,配合物1具有较好的发光性质。利用Gaussian09W程序,采用B3LYP/LANL2DZ方法对配合物1进行自然键轨道(NBO)分析。结果表明配位原子与Pb(Ⅱ)离子之间存在明显的共价相互作用。  相似文献   

10.
取代吡唑-5-酰基杂环衍生物的合成、结构与生物活性   总被引:8,自引:0,他引:8  
谭成侠  沈德隆  翁建全  欧晓明 《有机化学》2005,25(10):1268-1273
为了寻求新的含吡唑双杂环先导化合物. 用4-取代-1-甲基-3-乙基-5-吡唑甲酰氯与2-噻唑烷酮、2-噻唑硫酮、2-噁唑烷酮等含氮杂环反应得到了12个含吡唑环的双杂环化合物. 化合物结构用IR, 1H NMR, MS和元素分析进行了表征. 并用X射线单晶衍射法测定了化合物3-(1-甲基-3-乙基-4-硝基-5-吡唑甲酰基)-噁唑烷-2-酮(3k)的晶体结构. 晶体为单斜晶系, P21/n (#14)空间群, a=1.52175(3) nm, b=0.52970(1) nm, c=1.58185(3) nm, β=104.893(4), V=1.2323(4) nm3, Z=4, Dc=1.45 g/cm3, F(000)=560.00, R1=0.064, wR2=0.193. 初步生物活性实验结果表明, 在25 mg/L浓度下, 3-(1-甲基-3-乙基-4-硝基-5-吡唑甲酰基)-噻唑烷-2-酮(3c), 3-(1-甲基-3-乙基-4-硝基-5-吡唑甲酰基)-噻唑烷-2-硫酮(3g)对水稻稻瘟病菌(Pyricularia oryzae)的抑制活性达到40%. 在500 mg/L浓度下, 3-(1-甲基-3-乙基-4-溴-5-吡唑甲酰基)-噻唑烷-2-酮(3d), 3-(1-甲基-3-乙基-4-溴-5-吡唑甲酰基)-噁唑烷-2-酮(3l)对稻黑尾叶蝉(Nephotettix cinc-ticeps)的抑制活性达到53.37%.  相似文献   

11.
The new zinc ternary complexes [Zn(cyclen)NO3]ClO4 (I), [Zn2(cyclen)2(m-nic)](ClO4)3 (II), [Zn2(cyclen)2(m-pic)](ClO4)3 (III) (cyclen=1,4,7,10-tetraazacyclododecane; nic=nicotinic acid; pic=picolinic acid) were synthesized and their spectral and thermal properties were investigated. The compounds were characterized by elemental analysis, IR spectroscopy and TG/DTG, DTA methods. Moreover, the way of coordination of pyridinecarboxylate anions was proposed on the basis of the spectral data and consequently proved with results of X-ray structure analysis. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Toxic metal (Cd2+, Hg2+, Pb2+, and Ag+) complexes with the tetradentate macrocyclic ligand - cyclen (1,4,7,10-tetraazacyclododecane, [12]aneN4, L) were prepared and studied in the solid state by IR, X-ray diffraction, elemental and thermal analysis. Diffraction results have yielded three molecular structures, [Cd([12]ane-κ4N1,4,7,10)(NO3)2)] (1), [Hg([12]ane-κ4N1,4,7,10)(NO3-κ2O,O`)]NO3 (2), [Pb2([12]ane-κ4N1,4,7,10)2][Pb(NO3)6] (3) and one polymeric structure {[Ag2([12]ane-κ3N1,4,7)(μ2-[12]aneN10)](NO3)2?2H2O)}n (4) featuring a unique coordination mode not observed before with cyclen as a ligand. The monodentate (1) and chelate (with small bite angle 50.3(3)°, (2) coordination modes of nitrate ligands were confirmed. Stereochemically active 6s2 lone pair was suggested in 3 and DFT results confirmed no significant metal–metal covalent bond. The stability constants of the complexes with Cd2+ and Pb2+ ions were determined by potentiometric methods in aqueous solutions. Additionally, the structures of complexes in solution were observed by 1H NMR. Both methods confirm similar cyclen complexing properties toward Zn2+ biometal and Cd2+, Pb2+ toxic metals.  相似文献   

13.
A series of complexes [M(bbtr)3]A2 (M=FeII, ZnII; bbtr=1,4‐bis(1,2,3‐triazol‐1‐yl)butane; A=ClO4?, BF4?) and [FexZn1?x(bbtr)3](ClO4)2 (0<x<1) dilute systems was synthesized and characterized. Earlier studies on [Fe(bbtr)3](ClO4)2 ( 1?ClO4 ), which crystallizes in space group P$\bar 3A series of complexes [M(bbtr)(3)]A(2) (M=Fe(II), Zn(II); bbtr=1,4-bis(1,2,3-triazol-1-yl)butane; A=ClO(4)(-), BF(4)(-)) and [Fe(x)Zn(1-x)(bbtr)(3)](ClO(4))(2) (0相似文献   

14.
A series of novel α,ω-bis(4-methylphenoxy) alkane functionalized cyclen ligands were synthesized by the nucleophilic substitution reaction of 1,4,7-tris(tert-butyloxycarbonyl)-1,4,7,10-tetraazacyclododecane and α,ω-bis(4-bromomethylphenoxy) alkanes. The corresponding dimeric Zn(II)–cyclen complexes were obtained by reaction of these ligands with Zn(ClO4)2·6H2O. Ligands and complexes were characterized by FT-IR, 1H NMR, and elemental analysis.  相似文献   

15.
Two novel supramolecular complexes [Ni(cyclen)(H2O)2](tpa)(1) and [Cu(cyclen)H2O](tpa)⋅3H2O (2) were synthesized and their structures were characterized with elemental analysis, IR spectrum, TGA and X-ray diffractometer, indicating that the complexes 1 and 2 consist of one-dimensional chain and two-dimensional net-work structures formed by intermolecular hydrogen-bonding interaction, respectively. TGA curves show the similar steps of weightloss for 1 and 2.  相似文献   

16.

We have previously shown that the nucleobase thymine binding to Zn2+ -cyclen (cyclen=1,4,7,10-tetraazacyclododecane) complex became stronger by appending acridine, naphthalene, or quinoline rings to the cyclen. Amongst these, the pendant bis((1-naphthyl)methyl) or bis((4-quinolyl)methyl) groups yielded the most effective thymine-recognizing Zn2+ -cyclen complexes [J. Am. Chem. Soc., 121 (1999) 5426]. The present study was undertaken to find causes of the bis(aromatic) ring effect by X-ray crystal structure analysis and NMR studies. The crystal structure of the Zn2+ -bis((1-naphthyl)methyl)-cyclen complex with a deprotonated 1-methylthymine (1-MeT) failed to show the anticipated evidence for the double ~ - ~ stacking interactions between the two naphthalenes and the Zn 2+ -bound 1-MeT m (1-MeT m =N(3')-deprotonated 1-MeT). Crystal data: formula C36 H47 N7 O7 Zn, M r =755.19, monoclinic, space group P21/ c (No. 14), a =15.438(2) Å, b =14.093(3) Å, c =16.726(2) Å, g =90.53(1) V =3638.7(8) Å 3 Z =4, R =0.035, R w =0.049. However, the 1H NMR studies of Zn2= -bis((4-quinolyl)methyl)-cyclen with 1-MeT in varying H2O/CH3 CN solution showed increasing upfield shifts of Me(5') and H(6') of the Zn2+ -bound 1-MeT in more aqueous media, indicating that the double intercalation with the two quinolines became more significant in more protic environments. We conclude that the double ~ - ~ stacking effect accounts for the enhanced recognition of thymine base by the appended bis((1-naphthyl)methyl) or bis((4-quinolinyl)methyl) groups.  相似文献   

17.
Two new routes for alkylsubstituton of one in four amino groups in 1,4,7,10-tetraazacyclododecane (cyclen) are described, isomeric N-tris(hydroxy)butylcyclens 4 and 6 have been obtained in very good yields. Further carboxymethylation of other three amino groups afforded 10-tris(hydroxy)butyl-1,4,7-tris(carboxymethyl)cyclens 1 and 2.  相似文献   

18.
We have previously reported that the trimeric Zn2+–cyclen complex (tris(Zn2+–cyclen), [Zn3L1]6+) and the trianion of trithiocyanuric acid (TCA3−) assembled in a 4:4 ratio to form a cuboctahedral supramolecular cage, [(Zn3L1)4(TCA3−)4]12+ (hereafter referred to as a Zn–cage), in neutral aqueous solution (cyclen=1,4,7,10-tetraazacyclododecane). Herein, we examined the molecular recognition of C1–C12 hydrocarbons (CnH(2n+2) (n≈1–12)), cyclopentane, cyclododecane, cis-decalin, and trans-decalin by the Zn–cage under normal atmospheric pressure. This cage complex was also able to encapsulate guest molecules that had larger volumes than that of the inner cavity of the Zn–cage, thereby suggesting that the inner shape of the Zn–cage was flexible. Computational simulations of Zn–cage–guest complexes provided support for this conclusion. Moreover, the solvent-accessible surface areas (SASA) of the Zn–cage host, guest molecules, and the Zn–cage-guest complexes were calculated and the data were used to explain the order of stability determined by the guest-replacement experiments. The storage of volatile molecules in aqueous solution by the Zn–cage is also discussed.  相似文献   

19.
A new 2-(9-anthrylmethylamino)ethyl-appended cyclen, L(3) (1-(2-(9-anthrylmethylamino)ethyl)-1,4,7,10-tetraazacyclododecane) (cyclen = 1,4,7,10-tetraazacyclododecane), was synthesized and characterized for a new Zn(2+) chelation-enhanced fluorophore, in comparison with previously reported 9-anthrylmethylcyclen L(1) (1-(9-anthrylmethyl)-1,4,7,10-tetraazacyclododecane) and dansylamide cyclen L(2). L(3) showed protonation constants log K(a)(i)() of 10.57 +/- 0.02, 9.10 +/- 0.02, 7.15 +/- 0.02, <2, and <2. The log K(a3) value of 7.15 was assigned to the pendant 2-(9-anthrylmethylamino)ethyl on the basis of the pH-dependent (1)H NMR and fluorescence spectroscopic measurements. The potentiometric pH titration study indicated extremely stable 1:1 Zn(2+)-L(3) complexation with a stability constant log K(s)(ZnL(3)) (where K(s)(ZnL(3)) = [ZnL(3)]/[Zn(2+)][L(3)] (M(-)(1))) of 17.6 at 25 degrees C with I = 0.1 (NaNO(3)), which is translated into the much smaller apparent dissociation constant K(d) (=[Zn(2+)](free)[L(3)](free)/[ZnL(3)]) of 2 x 10(-)(11) M with respect to 5 x 10(-)(8) M for L(1) at pH 7.4. The quantum yield (Phi = 0.14) in the fluorescent emission of L(3) increased to Phi = 0.44 upon complexation with zinc(II) ion at pH 7.4 (excitation at 368 nm). The fluorescence of 5 microM L(3) at pH 7.4 linearly increased with a 0.1-5 microM concentration of zinc(II). By comparison, the fluorescent emission of the free ligand L(1) decreased upon binding to Zn(2+) (from Phi = 0.27 to Phi = 0.19) at pH 7.4 (excitation at 368 nm). The Zn(2+) complexation with L(3) occurred more rapidly (the second-order rate constant k(2) is 4.6 x 10(2) M(-)(1) s(-)(1)) at pH 7.4 than that with L(1) (k(2) = 5.6 x 10 M(-)(1) s(-)(1)) and L(2) (k(2) = 1.4 x 10(2) M(-)(1) s(-)(1)). With an additionally inserted ethylamine in the pendant group, the macrocyclic ligand L(3) is a more effective and practical zinc(II) fluorophore than L(1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号