首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electron densities in the atmospheric pressure helium plasma were calculated by means of electron drift velocity and the jet velocity respectively. The electron velocity and jet velocity can be calculated by means of helium plasma jet current measured by a dielectric probe and plasma discharge current signal measured by voltage probes. The results show that the estimated electron densities of the helium plasma jet calculated from electron drift velocity and the jet velocity are in the order of 10 11 cm -3 and they increase with applied voltage. There is a little fluctuation in the value of the electron density along the jet axis of the plasma. This result is the same as the measured electron density in atmospheric pressure helium non-thermal plasma jet by using a Rogowski coil and a Langmuir probe. This is in one order lower than the electron density measured by microwave antenna.  相似文献   

2.
分别利用电子的漂移速度和等离子体的传播速度计算了大气压下氦等离子体射流的电子密度。  相似文献   

3.
An experimental and theoretical investigation of the oxygen glow discharge structure at low pressures has been performed. Radial dependencies of the electron energy distribution function, the ambipolar plasma potential, and the negative ion concentration, as well as the axial electric field and the concentrations of atomic and singlet oxygen were measured. A new approach to the application of laser photodetachment method has been used to measure the negative ion concentration. It allows one to obtain information about fast processes after the photodetachment at low frequencies (~100-200 Hz) by using the simplest modulation technique. A self-consistent model involving the electrodynamics and kinetics of the discharge was developed. The observed variations of the negative ion densities with current density and oxygen pressure were explained in the model frame by a dependence of the detachment rate constant of the O-+O→e+O2 process on the effective ion temperature (k=1.9·10-10-√1100/Tieff). It was shown that the feature of oxygen dc discharge at low pressures is a possibility to change the basic type of negative ions from the O- to the O2-. This effect become more pronounced with decreasing current density  相似文献   

4.
The plasma properties of a medium-vacuum nitrogen arc discharge from a titanium cathode were studied. The arc chamber use was 400 mm in diameter and 600 mm in length. The cathode diameter and thickness were 64 and 25 mm, respectively. The experimental conditions are given as follows: pressure range=1×10-3~2×10-1 torr; N2 gas flow rate=6 ml/min; arc current=50 A. Electric probe characteristics are measured as a function of pressure and distance from the cathode surface. The analytical results obtained show that the electron energy distribution takes 1-Mx at pressures above 1×10-2 torr but 2-Mx at pressures under 4×10-2 torr and that the electron density has a maximum value at a certain pressure. The Ti+, Ti++, and N +2 ion spectral intensities are measured as a function of pressure and distance from the cathode surface. On comparison of these results and the electron density, the Ti+ spectral intensity turns out to be proportional to that of the electron density. This suggests that the major ion in the plasma volume is of the Ti+ species  相似文献   

5.
The importance of having high local cathode spot pressures for the self-sustaining operation of a thermal arc plasma on a cold cathode is theoretically investigated. Applying a cathode sheath model to a Cu cathode, it is shown that cathode spot plasma pressures ranging 7.4-9.2 atm and 34.2-50 atm for electron temperatures of ~1 eV are needed to account for current densities of 109 and 1010 A·m-2, respectively. The study of the different contributions from the ions, the emission electrons, and the back-diffusing plasma electrons to the total current and heat transfer to the cathode spot has allowed us to show the following. 1) Due to the high metallic plasma densities, a strong heating of the cathode occurs and an important surface electric field is established at the cathode surface causing strong thermo-field emission of electrons. 2) Due to the presence of a high density of ions in the cathode vicinity, an important fraction of the total current is carried by the ions and the electron emission is enhanced. 3) The total current is only slightly reduced by the presence of back-diffusing plasma electrons in the cathode sheath. For a current density jtot=109 A·m-2 , the current to the cathode surface is mainly transported by the ions (76-91% of jtot while for a current density jtot = 1010 A·m-2, the thermo-field electrons become the main current carriers (61-72% of jtot). It is shown that the cathode spot plasma parameters are those of a high pressure metallic gas where deviations from the ideal gas law and important lowering of the ionization potentials are observed  相似文献   

6.
刘涛  赵永蓬  丁宇洁  李小强  崔怀愈  姜杉 《物理学报》2017,66(15):155201-155201
建立了计算69.8nm激光增益系数的理论模型,根据实验参数,计算了在主脉冲电流为12 kA时,69.8nm激光增益系数最大值为0.32 cm~(-1).理论模拟了不同初始气压下增益系数在毛细管径向上的分布情况.对理论结果的分析表明,最佳的初始气压在12—14 Pa范围内,此时69.8nm激光增益系数的极值最大.实验上,利用毛细管放电装置和罗兰光谱仪,测量了不同气压下的69.8nm激光强度,实验确定的最佳气压为16 Pa,与理论结果相近.此外,实验测量的增益系数(0.4 cm~(-1))略高于理论计算的增益系数(0.32 cm~(-1)).  相似文献   

7.
Using capacitively coupled electrical discharges, an array of three plasma torches powered by a single 60-Hz source are lit up simultaneously to produce a dense plasma in the open air. The discharge voltage and current of each torch is measured for three cases of one to three torches being lit up in the array. The results determine the ν-i characteristic of the discharge which indicates that the torch is operating in a diffuse are mode. The torch array is modeled by an equivalent circuit for simulating its operation. The simulation results of the discharge voltage and current of a torch are shown to agree well with those from the experimental measurements for the three cases. The lump circuit model is then used to carry out numerical simulations of the discharge for a broad parameter space of plasma species. By fitting the simulation results, a function giving the parametric dependence of the consumed average power density 〈P〉 on the normalized average electron density 〈ne〉 maintained in the plasma is determined to be 〈P〉 48 〈ne1.9α_0.4(W/cm3), where 〈ne〉 is normalized to 1013cm-3 and α_, the electron-ion recombination coefficient normalized to 10-7 cm3·s-1, is used as a variable parameter in the simulation  相似文献   

8.
A model is formulated and evaluated for a Uniform electrical discharge sustained in vapor evaporated from an arc-heated anode. The plasma potential is positive with respect to both the cathode and anode. For a Cu anode, the anodic vapor dominates the plasma for current densities exceeding 8 kA/m2. The anode heating potential is approximately 6.5 V, and the dominant cooling mechanism is evaporation for current densities exceeding 20 kA/m2. Over the range 10 to 10000 kA/m2, the electron density increases from 8×1017 to 5×1023 m-3, while the ionization fraction rises from 0.3% to 4%. At the lower end of this current range the electrical resistivity of 4 mΩ-m is determined primarily by electron-neutral collisions, while with increasing current the resistivity decreases to 0.7 mΩ-m, with electron-ion collisions contributing an equal share. This hot-anode vacuum arc may have potential for industrial application as a macroparticle-free high-deposition-rate coating source  相似文献   

9.
In the experiments an relativistic electron beam (REB)-plasma interaction, the foilless injection of REB from a magnetized diode is of special interest due to the low spread angle of the beam and high repetition rate of the shots. In the experiments presented, the problem of diode shortening in the presence of a dense plasma from the interaction chamber has been solved using a special drift pipe as an anode of the foilless diode. The electron beam (Ud~0.7 MeV, t b~100-200 ns) produced by an axially symmetric magnetically insulated diode has been injected into a magnetized hydrogen plasma column with density ranging from 1·1015-3·10 16 cm-3. It has been found that the anode pipe substantially reduces the plasma flow into the diode gap, but does not stop it completely, thus the REB generation in a plasma-filled diode has taken place. In some regimes of the beam generation it becomes possible to increase significantly the injected current and total energy deposition of the beam in comparison with the case of a vacuum magnetized diode of the same geometry. The experiments have shown effective dense plasma heating under the foilless injection  相似文献   

10.
Formation of an atmospheric pressure dusty air plasma is explored experimentally in this paper. The plasma is created by seeding an air flow with graphite particles and irradiating the particulates with a focused CO2 laser beam. The graphite particles are, thus, heated to thermionically emitting temperatures, and average particle temperatures and average particle number densities are measured. The presence of charges is inferred both from these measured quantities using a simple theoretical transient model, and experimentally by applying a dc bias across the irradiated region. It is found that an electron density of ~6.7 × 105 cm-3 (6.7 × 1011 m-3) can be produced at steady state in the presence of O2. This value can be increased to 3.6 × 107 cm-3 (3.6 × 1013 m -1) in the ideal case where an electron attachment to O2 is suppressed and where a lower work function particulate is used  相似文献   

11.
Temperature, energy, and densities of two electron distribution function components, including an isotropic bulk part and an anisotropic beam, are analyzed for a hydrogen pseudospark and/or back-lighted thyratron switch plasma with a peak electron density of 1-3×1015 cm-3 and peak current density of ≈104 A/cm2. Estimates of a very small cathode-fall width during the conduction phase and high electric field strengths lead to the injection of an electron beam with energies ⩾100 eV and density of 1013-1014 cm-3 into a Maxwellian bulk plasma. Collisional and radiative processes of monoenergetic beam electrons, bulk plasma electrons and ions, and atomic hydrogen are modeled by a set of rate equations, and line intensity ratios are compared with measurements. Under these high-current conditions, for an initial density nH2=1016 cm-3 and electron temperature of 0.8-1 eV, the estimated beam density is ≈1013 -1014 cm-3. These results suggest the possibility of producing in a simple way a very high-density electron beam  相似文献   

12.
The multichannel bremsstrahlung measurement system on HL-2A tokamak has been using to observe the intensity of visible (535.1nm) bremsstrahlung radiation. Combined the intensity with plasma electron density and electron temperature, the effective ion charge measurements can be obtained on HL-2A tokamak. The 1×1019m−3 to4×1019m−3 experimental results show that when the plasma electron density increases from 1×10 m to 4×10 m , the effective ion charge number changes from 5 down to around 2. The bremsstrahlung radiation signal intensity is proportional to the quadratic plasma density. When the electron density is higher than 3×1019m−3, the multichannel bremsstrahlung measurement system can collect sufficient signal through the plasma, which enables the measurement of effective ion charge radial profile.  相似文献   

13.
Plasma density and current profiles in a Z-pinch are important parameters to understand the implosion and radiation physics. This paper describes measurements of electron density and current at radii of ⩾200 μm from the axis of a dense plasma focus (DPF) pinch plasma that is imploded by a ≈0.3 MA current pulse. These measurements use laser interferometry and polarimetry. The electromagnetic wave propagating through a current carrying plasma will change its phase, polarization state, and propagation direction. Refraction by electrons bends the wave fronts and changes the propagation direction; Faraday rotation due to the magnetic field and electron density rotates the laser polarization vector. By measuring these quantities simultaneously, the magnetic field and electron density can be separately determined. Although the DPF used here is a low current device, the measured densities (⩽1020 cm-3) and magnetic fields (~100 T) are similar to values expected just outside higher current but larger radius Z-pinches, so this technique should be applicable there as well. The techniques described here do not require access to the core of the pinch to work; just outside these pinches the coronal density and self-magnetic field are high enough to give reliable data but not so high as to make the measurements difficult  相似文献   

14.
通过测量可见光谱段的轫致辐射(λ=535.1nm)强度,结合等离子体电子密度和电子温度,HL-2A  相似文献   

15.
The plasma produced by a 10 cm×6 cm planar flashboard has been investigated by emission spectroscopy. The plasma composition, density, and temperature have been determined with time and space resolution using measurement of the relative intensity of spontaneous emission in different atomic and ionic transitions together with calculations based on a collisional-radiative equilibrium model. The (1-2)×1013 cm-3 and (3-4) eV plasma flows away from the flashboard surface at a speed of about 10 cm/μs. A 1.7 cm/μs transverse velocity has been obtained from the Doppler width of an emission line  相似文献   

16.
The 4,4 dimethyl amino cyano biphenyl crystal(DMACB) is characterized by its nonlinear activity. The intra molecular charge transfer of this molecule results mainly from the electronic transmission of the electro-acceptor(cyano) and electro-donor(di-methyl-amino) groups. An accurate electron density distribution around the molecule has been calculated based on a high-resolution X-ray diffraction study. The data were collected at 123 K using graphite-monochromated Mo Kα radiation to sin(θ)/λ = 1.24 A 1. The integrated intensities of 13796 reflections were measured and reduced to 6501 independent reflections with I ≥ 3σ(I). The crystal structure was refined using the experimental model of Hansen and Coppens(1978). The crystal structure has been validated and deposited at the Cambridge Crystallographic Data Centre with the deposition number CCDC 876507. In this article, we present the thermal motion and the structural analysis obtained from the least-square refinement based on F2 and the electron density distribution obtained from the multipolar model.  相似文献   

17.
Equipment plasma has been modeled semi-empirically using neural networks in conjunction with statistical experimental design. A 33 factorial design was employed to characterize the plasma, in which the variables that were varied include a source power, pressure, and Ar flow rate. As a test data for model validation, 16 experiments were additionally conducted. A total of six plasma attributes were modeled, which include electron density, electron temperature, and plasma potential as well as their spatial uniformities. A planar, inductively coupled plasma was generated in a multipole plasma etch equipment and Langmuir probe was utilized for data collection. Root mean-squared prediction errors measured on the test data are 0.323 (10 11/cm3), 0.267 (eV) and 1.141 (V) for electron density, electron temperature, and plasma potential, respectively. Comparisons with a statistical response surface model (RSM) revealed that neural network models are more accurate by an improvement of more than 25% in prediction performance. A similar level of prediction accuracy was also achieved in modeling spatial uniformity data. Consequently, neural networks demonstrated much better prediction capabilities over RSM in modeling complex equipment plasma  相似文献   

18.
Al激光等离子体的谱线展宽及线形研究   总被引:1,自引:0,他引:1       下载免费PDF全文
我们对Al激光等离子体的空间分辨光谱进行了研究。在2300—4000?波段观察到属于AlⅠ,AlⅡ及AlⅢ的近30条发射谱线。这些谱线的线宽及线移量随等离子体离开靶面的距离而变。我们选了五条不同离化态的谱线,根据Griem的理论公式及一部分实验数据,用半经验的方式对靶面附近的电子密度进行了粗略测量。发现不同离化态的Al原子谱线展宽数据之间符合较好,可以用来估算1×1017—5×1018cm-3范围的等离子体电子密度。但有关线移的数据则符合得较差,特别是AlⅡ的3586?及AlⅢ的3610?。这有待进一步的研究。 关键词:  相似文献   

19.
The generation of a highly ionized helium capillary plasma and the study of its temporal evolution are discussed. A 30-cm-long and 1-mm-diameter helium plasma was created with well-terminated kiloamp current pulses of 90-ns full width at half-maximum (FWHM). Emission spectroscopy was used to study the recombination of totally stripped ions into hydrogenic helium ions and to measure the evolution of the plasma density from the Stark broadening of HeII transitions. A 1.2-kA discharge current pulse was observed to create a plasma density of 8×1016 cm-3 in 1 torr of helium. The maximum intensity of HeII transitions occurs in the afterglow of the discharge pulse, following the collisional recombination of totally stripped ions with plasma electrons when the plasma cools. The study is of interest in relation to the possibility of obtaining amplification in the 164.0-nm line of HeII in a capillary discharge  相似文献   

20.
Nerve-muscle preparations of Sprague Dawley rats were exposed to low dosage ultrasound. The objectives were to measure the velocity of propagation and attenuation of ultrasonic energy in both the relaxed and contracted states. A tension-measuring system and associated ultrasonic instrumentation were designed to measure the tension developed in stimulated muscle and its corresponding acoustic parameters, ie the attenuation coefficient, (db cm-1) and the velocity of propagation, c (ms-1). Each test was performed at ultrasonic frequencies 3.1, 5.35, and 7.68 MHz and with the preparation maintained at 23 ± 0.5° C. Attenuation of ultrasonic energy was observed to increase by 10 ± 0.5% in the active state from its value in the relaxed state. The relation between the attenuation and the acoustic frequency was found to be approximately linear over the frequency range tested. The velocity of propagation in the active state did not change appreciably from its value in the relaxed state and was observed to be independent of the acoustic frequency in the range used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号