首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Community detection is of great significance in understanding the structure of the network. Label propagation algorithm (LPA) is a classical and effective method, but it has the problems of randomness and instability. An improved label propagation algorithm named LPA-MNI is proposed in this study by combining the modularity function and node importance with the original LPA. LPA-MNI first identify the initial communities according to the value of modularity. Subsequently, the label propagation is used to cluster the remaining nodes that have not been assigned to initial communities. Meanwhile, node importance is used to improve the node order of label updating and the mechanism of label selecting when multiple labels are contained by the maximum number of nodes. Extensive experiments are performed on twelve real-world networks and eight groups of synthetic networks, and the results show that LPA-MNI has better accuracy, higher modularity, and more reasonable community numbers when compared with other six algorithms. In addition, LPA-MNI is shown to be more robust than the traditional LPA algorithm.  相似文献   

2.
Xue Li 《Physics letters. A》2019,383(21):2481-2487
How to better and faster identify the community structure is a hot issue in complex networks. During the past decades, various attempts have been made to solve this issue. Amongst them, without doubt, label propagation algorithm (LPA) is one of the most satisfying answers, especially for large-scale networks. However, it has one major flaw that when the community structure is not clear enough, a monster community tends to form. To address this issue, we set a growth curve for communities, gradually increasing from a low capacity to a higher capacity over time. Further, we improve the mechanism of label choosing for small communities to escape from local maximum. The experimental results on both synthetic and real networks demonstrate that our algorithm not only enhances the detection ability of the traditional label propagation algorithm, but also improves the quality of the identified communities.  相似文献   

3.
Xue Li 《Physics letters. A》2019,383(8):732-737
Ignoring edge directionality and considering the graph as undirected is a common approach to detect communities in directed networks. However, it's not a meaningful way due to the loss of information captured by the edge property. Even if Leicht and Newman extended the original modularity to a directed version to address this issue, the problem of distinguishing the directionality of the edges still exists in maximizing modularity algorithms. To this direction, we extend one of the most famous scalable algorithms, namely label propagation algorithm (LPA), to a directed case, which can recognize the flow direction among nodes. To explore what properties the directed modularity should have, we also use another directed modularity, called LinkRank, and provide an empirical study. The experimental results on both real and synthetic networks demonstrate that the proposed directed algorithms can not only make use of the edge directionality but also keep the same time complexity as LPA.  相似文献   

4.
Agglomerative clustering is a well established strategy for identifying communities in networks. Communities are successively merged into larger communities, coarsening a network of actors into a more manageable network of communities. The order in which merges should occur is not in general clear, necessitating heuristics for selecting pairs of communities to merge. We describe a hierarchical clustering algorithm based on a local optimality property. For each edge in the network, we associate the modularity change for merging the communities it links. For each community vertex, we call the preferred edge that edge for which the modularity change is maximal. When an edge is preferred by both vertices that it links, it appears to be the optimal choice from the local viewpoint. We use the locally optimal edges to define the algorithm: simultaneously merge all pairs of communities that are connected by locally optimal edges that would increase the modularity, redetermining the locally optimal edges after each step and continuing so long as the modularity can be further increased. We apply the algorithm to model and empirical networks, demonstrating that it can efficiently produce high-quality community solutions. We relate the performance and implementation details to the structure of the resulting community hierarchies. We additionally consider a complementary local clustering algorithm, describing how to identify overlapping communities based on the local optimality condition.  相似文献   

5.
6.
Community detection is a fundamental work to analyse the structural and functional properties of complex networks.The label propagation algorithm(LPA) is a near linear time algorithm to find a good community structure. Despite various ubsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the asic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these onsensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the dge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number f partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps,y computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter o adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an pproach named the label propagation algorithm with consensus weight(LPAcw), and the experimental results showed that he LPAcw could enhance considerably both the stability and the accuracy of community partitions.  相似文献   

7.
Robust network community detection using balanced propagation   总被引:1,自引:0,他引:1  
Label propagation has proven to be an extremely fast method for detecting communities in large complex networks. Furthermore, due to its simplicity, it is also currently one of the most commonly adopted algorithms in the literature. Despite various subsequent advances, an important issue of the algorithm has not yet been properly addressed. Random (node) update orders within the algorithm severely hamper its robustness, and consequently also the stability of the identified community structure. We note that an update order can be seen as increasing propagation preferences from certain nodes, and propose a balanced propagation that counteracts for the introduced randomness by utilizing node balancers. We have evaluated the proposed approach on synthetic networks with planted partition, and on several real-world networks with community structure. The results confirm that balanced propagation is significantly more robust than label propagation, when the performance of community detection is even improved. Thus, balanced propagation retains high scalability and algorithmic simplicity of label propagation, but improves on its stability and performance.  相似文献   

8.
Community structure is an important feature in many real-world networks, which can help us understand structure and function in complex networks better. In recent years, there have been many algorithms proposed to detect community structure in complex networks. In this paper, we try to detect potential community beams whose link strengths are greater than surrounding links and propose the minimum coupling distance (MCD) between community beams. Based on MCD, we put forward an optimization heuristic algorithm (EAMCD) for modularity density function to welded these community beams into community frames which are seen as a core part of community. Using the principle of random walk, we regard the remaining nodes into the community frame to form a community. At last, we merge several small community frame fragments using local greedy strategy for the modularity density general function. Real-world and synthetic networks are used to demonstrate the effectiveness of our algorithm in detecting communities in complex networks.  相似文献   

9.
We introduce a new algorithm for modularity-based community detection in large networks. The algorithm, which we refer to as a smart local moving algorithm, takes advantage of a well-known local moving heuristic that is also used by other algorithms. Compared with these other algorithms, our proposed algorithm uses the local moving heuristic in a more sophisticated way. Based on an analysis of a diverse set of networks, we show that our smart local moving algorithm identifies community structures with higher modularity values than other algorithms for large-scale modularity optimization, among which the popular “Louvain algorithm”. The computational efficiency of our algorithm makes it possible to perform community detection in networks with tens of millions of nodes and hundreds of millions of edges. Our smart local moving algorithm also performs well in small and medium-sized networks. In short computing times, it identifies community structures with modularity values equally high as, or almost as high as, the highest values reported in the literature, and sometimes even higher than the highest values found in the literature.  相似文献   

10.
Loopy belief propagation (LBP) algorithm over pairwise-connected Markov random fields (MRFs) has become widely used for low-level vision problems. However, Pairwise MRF is often insufficient to capture the statistics of natural images well, and LBP is still extremely slow for application on an MRF with large discrete label space. To solve these problems, the present study proposes a new segmentation algorithm based on adaptive LBP. The proposed algorithm utilizes local region information to construct a local region model, as well as a local interaction region MRF model for image segmentation. The adaptive LBP algorithm maximizes the global probability of the proposed MRF model, which employs two very important strategies, namely, “message self-convergence” and “adaptive label pruning”. Message self-convergence can improve the reliability of a pixel in choosing a label in local region, and label pruning can dismiss impossible labels for every pixel. Thus, the most reliable information messages transfer through the LBP algorithm. The experimental results show that the proposed algorithm not only obtains more accurate segmentation results but also greater speed.  相似文献   

11.
Xu Liu  Qiang LuoDong-Yun Yi 《Physica A》2012,391(4):1797-1810
Decomposing a network into small modules or communities is beneficial for understanding the structure and dynamics of the network. One of the most prominent approaches is to repeatedly join communities together in pairs with the greatest increase in modularity so that a dendrogram that shows the order of joins is obtained. Then the community structure is acquired by cutting the dendrogram at the levels corresponding to the maximum modularity. However, there tends to be multiple pairs of communities that share the maximum modularity increment and the greedy agglomerative procedure may only merge one of them. Although the modularity function typically admits a lot of high-scoring solutions, the greedy strategy may fail to reach any of them. In this paper we propose an enhanced data structure in order to enable diverse choices of merging operations in community finding procedure. This data structure is actually a max-heap equipped with an extra array that stores the maximum modularity increments; and the corresponding community pairs is merged in the next move. By randomly sampling elements in this head array, additional diverse community structures can be efficiently extracted. The head array is designed to host the community pairs corresponding to the most significant increments in modularity so that the modularity structures obtained out of the sampling exhibit high modularity scores that are, on the average, even greater than what the CNM algorithm produces. Our method is tested on both real-world and computer-generated networks.  相似文献   

12.
We show here that the problem of maximizing a family of quantitative functions, encompassing both the modularity (Q-measure) and modularity density (D-measure), for community detection can be uniformly understood as a combinatoric optimization involving the trace of a matrix called modularity Laplacian. Instead of using traditional spectral relaxation, we apply additional nonnegative constraint into this graph clustering problem and design efficient algorithms to optimize the new objective. With the explicit nonnegative constraint, our solutions are very close to the ideal community indicator matrix and can directly assign nodes into communities. The near-orthogonal columns of the solution can be reformulated as the posterior probability of corresponding node belonging to each community. Therefore, the proposed method can be exploited to identify the fuzzy or overlapping communities and thus facilitates the understanding of the intrinsic structure of networks. Experimental results show that our new algorithm consistently, sometimes significantly, outperforms the traditional spectral relaxation approaches.  相似文献   

13.
A community in a complex network refers to a group of nodes that are densely connected internally but with only sparse connections to the outside. Overlapping community structures are ubiquitous in real-world networks, where each node belongs to at least one community. Therefore, overlapping community detection is an important topic in complex network research. This paper proposes an overlapping community detection algorithm based on membership degree propagation that is driven by both global and local information of the node community. In the method, we introduce a concept of membership degree, which not only stores the label information, but also the degrees of the node belonging to the labels. Then the conventional label propagation process could be extended to membership degree propagation, with the results mapped directly to the overlapping community division. Therefore, it obtains the partition result and overlapping node identification simultaneously and greatly reduces the computational time. The proposed algorithm was applied to a synthetic Lancichinetti–Fortunato–Radicchi (LFR) dataset and nine real-world datasets and compared with other up-to-date algorithms. The experimental results show that our proposed algorithm is effective and outperforms the comparison methods on most datasets. Our proposed method significantly improved the accuracy and speed of the overlapping node prediction. It can also substantially alleviate the computational complexity of community structure detection in general.  相似文献   

14.
Fuzzy analysis of community detection in complex networks   总被引:1,自引:0,他引:1  
Dawei Zhang  Yong Zhang  Kaoru Hirota 《Physica A》2010,389(22):5319-5327
A snowball algorithm is proposed to find community structures in complex networks by introducing the definition of community core and some quantitative conditions. A community core is first constructed, and then its neighbors, satisfying the quantitative conditions, will be tied to this core until no node can be added. Subsequently, one by one, all communities in the network are obtained by repeating this process. The use of the local information in the proposed algorithm directly leads to the reduction of complexity. The algorithm runs in O(n+m) time for a general network and O(n) for a sparse network, where n is the number of vertices and m is the number of edges in a network. The algorithm fast produces the desired results when applied to search for communities in a benchmark and five classical real-world networks, which are widely used to test algorithms of community detection in the complex network. Furthermore, unlike existing methods, neither global modularity nor local modularity is utilized in the proposal. By converting the considered problem into a graph, the proposed algorithm can also be applied to solve other cluster problems in data mining.  相似文献   

15.
沈毅  任刚  刘洋  徐家丽 《中国物理 B》2016,25(6):68901-068901
In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglomerating nodes into local communities,and the overlapping nodes are detected based on the idea of making each community strong.We propose a contribution coefficient b_v~(ci)to measure the contribution of an overlapping node to each of its belonging communities,and the fuzzy coefficients of the overlapping node can be obtained by normalizing the b_v~(ci) to all its belonging communities.The running time of our method is analyzed and varies linearly with network size.We investigate our method on the computergenerated networks and real networks.The testing results indicate that the accuracy of our method in detecting disjoint communities is higher than those of the existing local methods and our method is efficient for detecting the overlapping nodes with fuzzy coefficients.Furthermore,the local optimizing scheme used in our method allows us to partly solve the resolution problem of the global modularity.  相似文献   

16.
Zhihao Wu  Youfang Lin 《Physica A》2012,391(7):2475-2490
The detection of overlapping community structure in networks can give insight into the structures and functions of many complex systems. In this paper, we propose a simple but efficient overlapping community detection method for very large real-world networks. Taking a high-quality, non-overlapping partition generated by existing, efficient, non-overlapping community detection methods as input, our method identifies overlapping nodes between each pair of connected non-overlapping communities in turn. Through our analysis on modularity, we deduce that, to become an overlapping node without demolishing modularity, nodes should satisfy a specific condition presented in this paper. The proposed algorithm outputs high quality overlapping communities by efficiently identifying overlapping nodes that satisfy the above condition. Experiments on synthetic and real-world networks show that in most cases our method is better than other algorithms either in the quality of results or the computational performance. In some cases, our method is the only one that can produce overlapping communities in the very large real-world networks used in the experiments.  相似文献   

17.
Community structure is indispensable to discover the potential property of complex network systems. In this paper we propose two algorithms (QIEA-net and iQIEA-net) to discover communities in social networks by optimizing modularity. Unlike many existing methods, the proposed algorithms adopt quantum inspired evolutionary algorithm (QIEA) to optimize a population of solutions and do not need to give the number of community beforehand, which is determined by optimizing the value of modularity function and needs no human intervention. In order to accelerate the convergence speed, in iQIEA-net, we apply the result of classical partitioning algorithm as a guiding quantum individual, which can instruct other quantum individuals' evolution. We demonstrate the potential of two algorithms on five real social networks. The results of comparison with other community detection algorithms prove our approaches have very competitive performance.  相似文献   

18.
In many networks, it is of great interest to identify communities, unusually densely knit groups of individuals. Such communities often shed light on the function of the networks or underlying properties of the individuals. Recently, Newman suggested modularity as a natural measure of the quality of a network partitioning into communities. Since then, various algorithms have been proposed for (approximately) maximizing the modularity of the partitioning determined. In this paper, we introduce the technique of rounding mathematical programs to the problem of modularity maximization, presenting two novel algorithms. More specifically, the algorithms round solutions to linear and vector programs. Importantly, the linear programing algorithm comes with an a posteriori approximation guarantee: by comparing the solution quality to the fractional solution of the linear program, a bound on the available “room for improvement” can be obtained. The vector programming algorithm provides a similar bound for the best partition into two communities. We evaluate both algorithms using experiments on several standard test cases for network partitioning algorithms, and find that they perform comparably or better than past algorithms, while being more efficient than exhaustive techniques.  相似文献   

19.
To find the fuzzy community structure in a complex network, in which each node has a certain probability of belonging to a certain community, is a hard problem and not yet satisfactorily solved over the past years. In this paper, an extension of modularity, the fuzzy modularity is proposed, which can provide a measure of goodness for the fuzzy community structure in networks. The simulated annealing strategy is used to maximize the fuzzy modularity function, associating with an alternating iteration based on our previous work. The proposed algorithm can efficiently identify the probabilities of each node belonging to different communities with random initial fuzzy partition during the cooling process. An appropriate number of communities can be automatically determined without any prior knowledge about the community structure. The computational results on several artificial and real-world networks confirm the capability of the algorithm.  相似文献   

20.
Community detection has become an important methodology to understand the organization and function of various real-world networks. The label propagation algorithm (LPA) is an almost linear time algorithm proved to be effective in finding a good community structure. However, LPA has a limitation caused by its one-hop horizon. Specifically, each node in LPA adopts the label shared by most of its one-hop neighbors; much network topology information is lost in this process, which we believe is one of the main reasons for its instability and poor performance. Therefore in this paper we introduce a measure named weighted coherent neighborhood propinquity (weighted-CNP) to represent the probability that a pair of vertices are involved in the same community. In label update, a node adopts the label that has the maximum weighted-CNP instead of the one that is shared by most of its neighbors. We propose a dynamic and adaptive weighted-CNP called entropic-CNP by using the principal of entropy to modulate the weights. Furthermore, we propose a framework to integrate the weighted-CNP in other algorithms in detecting community structure. We test our algorithm on both computer-generated networks and real-world networks. The experimental results show that our algorithm is more robust and effective than LPA in large-scale networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号