首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ab initio SCF and CI calculations on the cationic and neutral complexes of formaldehyde and lithium are reported. For the cationic complex CH2O/Li+, the stabilization energy of 41.7 kcal/mol obtained from the SCF calculation increases to 51.6 kcal/mol if a configuration interaction is introduced. For the neutral complex CH2O?/Li+, the C2v-conformer of the 2A1-state with the equilibrium bond distances of d(C? O) = 1.23 Å and d (O? Li) = 1.90 Å is calculated to be more stable than the 2B1-state with d (C? O) = 1.34 Å, and d (O? Li) = 1.65 Å. Charge transfer and polarization effects upon complex formation are discussed.  相似文献   

2.
The hole transport of trans-1,2-biscarbazolylcyclobutane (CB) doped poly(bisphenol A carbonate) (PC) film has been investigated in the CB concentration range of 3.8 × 10?4 mol cm?3 (12 wt%) to 1.6 × 10?3 mol cm?3 (51 wt%). The hole mobility increased drastically with increasing CB concentration. The hole mobility was analyzed by a random hopping model. The localization radius ρ0 of the CB/PC system was 1.9 Å, which is larger than that obtained for the N-isopropyl-carbazole-doped PC system. This suggests that the larger localization radius of the CB/PC system is related to the larger spatial extent of the CB molecule. The highest hole mobility of 2.9 × 10?6 cm2 V?1 s?1 was obtained when the CB concentration was 1.6 × 10?3 mol cm?3 (51 wt%) at E = 1.6 × 105 V cm?1 and T = 298 K. This mobility is about 10 times higher than that of poly(N-vinylcarbazole) (PVCz). The activation energy of hole mobility for the CB/PC system decreased with increasing CB concentration and was 0.31 eV at 51 wt% of CB, which is lower than the 0.45 eV for PVCz. The low activation energy for the CB/PC system is ascribed to the absence of an excimer-forming site that works as a multiple-trapping site for hole carriers.  相似文献   

3.
3‐Methyl‐3‐(3‐pentyl)‐1,2‐dioxetane 1 and 3‐methyl‐3‐(2,2‐dimethyl‐1‐propyl)‐1,2‐dioxetane 2 were synthesized in low yield by the α‐bromohydroperoxide method. The activation parameters were determined by the chemiluminescence method (for 1 ΔH‡ = 25.0 ± 0.3 kcal/mol, ΔS‡ = −1.0 entropy unit (e.u.), ΔG‡ = 25.3 kcal/mol, k1 (60°C) = 4.6 × 10−4s−1; for 2 ΔH‡ = 24.2 ± 0.2 kcal/mol, ΔS‡ = −2.0 e.u., ΔG‡ = 24.9 kcal/mol, k1 (60°C) = 9.2 × 10−4s−1. Thermolysis of 1–2 produced excited carbonyl fragments (direct production of high yields of triplets relative to excited singlets) (chemiexcitation yields for 1: ϕT = 0.02, ϕS ≤ 0.0005; for 2: ϕT = 0.02, ϕS ≤ 0.0004). The results are discussed in relation to a diradical‐like mechanism. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:176–179, 2001  相似文献   

4.
Attempts to deprotonate nitrocyclopropane led to solutions which showed strong ESR. signals (Fig. 1)and from which 1-nitro- l′-nitroso-bicyclopropyl ( 3 ) and 1,1′-dinitro-bicyclopropyl ( 2 ) were isolated. The activation energy for rotation about the central C, C-bond of 2 is estimated to be about 12 kcal/mol (1 H-NMR. spectra in Fig. 2). In contrast, the oven-chain analogue 2,3-dimethyl-2,3-dinitrobutane ( 1 ) shows a methyl singlet down to ?70° C. Low-temperature X-ray analyses of 1, 2, 3 , and also of 1,1′-dinitro-bicyclobutyl ( 4 ) show that all four molecules have gauche-conformations but reveal striking structural differences between the openchain and the cyclic derivatives (Fig. 4–6): the central C, C-bond is long in 1 (1.575 Å), short in 2 (1.479 Å); the C, N-bonds are long in 1 (1.549 Å), short in 2 (1.488 Å); the orientation of the nitro groups is bisected in 2 and perpendicular in 1. The crystal structure of the nitro-nitroso compound 3 is isomorphous with that of the dinitro compound 2 and thus disordered (Fig. 15–16). The effect of the nitro group as π-electron acceptor on the molecular conformations and bond lengths is discussed. From analysis of the anisotropic vibrational parameters of 2 the root-mean-square librational amplitude of the nitro groups about their C, N-bonds is estimated to be about 5.8° at 95 K, corresponding to a rotational barrier of about 9 kcal/mol, i. e. the same order of magnitude as the NMR. estimate of about 12 kcal/mol for C, C-rotation.  相似文献   

5.
The thermal unimolecular decomposition of three vinylethers has been studied in a VLPP apparatus. The high-pressure rate constant for the retro-ene reaction of ethylvinylether was fit by log k (sec?1) = (11.47 + 0.25) - (43.4 ± 1.0)/2.303 RT at <T> = 900 K and that of t - butylvinylether by log k (sec?1) = (12.00 ± 0.27) - (38.4 ± 1.0)/2.303 RT at <T> = 800 K. No evidence for the competition of the higher energy homolytic bond-fission process could be obtained from the experimental data. The rate constant compatible with the C? O bond scission reaction in the case of benzylvinylether was log k (sec?1) = (16.63 ± 0.30) - (53.74 ± 1.0)/2.303 RT at <T> = 750 K. Together with ΔHf,3000(benzyl·) = 47.0 kcal/mol, the activation energy for this reaction results in ΔHf,3000(CH2CHO) = +3.0 ± 2.0 kcal/mol and a corresponding resonance stabilization energy of 3.2 ± 2.0 kcal/mol for 2-ethanalyl radical.  相似文献   

6.
The kinetics and equilibria in the system Br + t-BuO2H ? HBr + t-BuO2· have been measured in the range of 300–350 K using the very low pressure reactor (VLPR) technique. Using an estimated entropy change in reaction (1) ΔS1 = 3.0 ± 0.4 cal/mol·K together with the measured ΔG1, we find ΔH1 = 1.9 ± 0.2 kcal/mol and DHº (t-BuO2-H) = 89.4 ± 0.2 kcal/mol ΔHf·(tBuO2·) = 20.7 kcal/mol and DHº (t-Bu-O2) = 29.1 kcal/mol. The latter values make use of recent values of ΔHf·(t-Bu) = 8.4 ± 0.5 kcal/mol and the known thermochemistry of the other species. The activation energy E1 is found to be 3.3 ± 0.6 kcal/mol, about 1 kcal lower than the value found for Br attack on H2O2. It suggests a bond 1 kcal stronger in H2O2 than in tBuO2H.  相似文献   

7.
Pd-catalyzed double carbomethoxylation of the Diels-Alder adduct of cyclo-pentadiene and maleic anhydride yielded the methyl norbornane-2,3-endo-5, 6-exo-tetracarboxylate ( 4 ) which was transformed in three steps into 2,3,5,6-tetramethyl-idenenorbornane ( 1 ). The cycloaddition of tetracyanoethylene (TCNE) to 1 giving the corresponding monoadduct 7 was 364 times faster (toluene, 25°) than the addition of TCNE to 7 yielding the bis-adduct 9 . Similar reactivity trends were observed for the additions of TCNE to the less reactive 2,3,5,6-tetramethylidene-7-oxanorbornane ( 2 ). The following second order rate constants (toluene, 25°) and activation parameters were obtained for: 1 + TCNE → 7 : k1 = (255 + 5) 10?4 mol?1 · s?1, ΔH≠ = (12.2 ± 0.5) kcal/mol, ΔS≠ = (?24.8 ± 1.6) eu.; 7 + TCNE → 9 , k2 = (0.7 ± 0.02) 10?4 mol?1 · s?1, ΔH≠ = (14.1 ± 1.0) kcal/mol, ΔS≠ = ( ?30 ± 3.5) eu.; 2 + TCNE → 8 : k1 = (1.5 ± 0.03) 10?4 mol?1 · s?1, ΔH≠ = (14.8 ± 0.7) kcal/mol, ΔS≠ = (?26.4 ± 2.3) eu.; 8 + TCNE → 10 ; k2 = (0.004 ± 0.0002) 10?4 mol?1 · s?1, ΔH≠ = (17 ± 1.5) kcal/mol, ΔS≠ = (?30 ± 4) eu. The possible origins of the relatively large rate ratios k1/k2 are discussed briefly.  相似文献   

8.
The thermal decomposition of cyclobutyl chloride has been investigated over the temperature range of 892–1150 K using the technique of very low-pressure pyrolysis (VLPP). The reaction proceeds via two competitive unimolecular channels, one to yield ethylene and vinyl chloride and the other to yield 1,3-butadiene and hydrogen chloride, with the latter being the major reaction under the experimental conditions. With the usual assumption that gas-wall collisions are «strong,» RRKM calculations, generalized to take into account two competing pathways, show that the experimental unimolecular rate constants are consistent with the high-pressure Arrhenius parameters given by log k1(sec?1) = (14.8 ± 0.3) ? (61.1 ± 1.0)/Θ for vinyl chloride formation and log k2(sec?1) = (13.6 ± 0.3) ? (55.7 ± 1.0)/Θ for 1,3-butadiene formation, where Θ = 2.303 RT kcal/mol. The A factors were assigned from previous high-pressure low-temperature data of other workers assuming a four-center transition state for 1,2-HCl elimination and a chlorine-bridged biradical transition state for vinyl chloride formation. The activation energies are in good agreement with the high-pressure results which were obtained with a conventional static system. The difference in critical energies is 4.6 kcal/mol.  相似文献   

9.
10.
The unimolecular decomposition of 3,3-dimethylbut-1-yne has been investigated over the temperature range of 933°-1182°K using the technique of very low-pressure pyrolysis (VLPP). The primary process is C? C bond fission yielding the resonance stabilized dimethylpropargyl radical. Application of RRKM theory shows that the experimental unimolecular rate constants are consistent with the high-pressure Arrhenius parameters given by log (k/sec?1) = (15.8 ± 0.3) - (70.8 ± 1.5)/θ where θ = 2.303RT kcal/mol. The activation energy leads to DH0[(CH3)2C(CCH)? CH3] = 70.7 ± 1.5, θH0f((CH3)2?CCH,g) = 61.5 ± 2.0, and DH0[(CH3)2C(CCH)? H] = 81.0 ± 2.3, all in kcal/mol at 298°K. The stabilization energy of the dimethylpropargyl radical has been found to be 11.0±2.5 kcal/mol.  相似文献   

11.
The kinetics of polymerization of tributyltin methacrylate (TBTM) has been studied in benzene solution in the temperature range 60–75°C in the presence of azobisisobutyronitrile (AIBN). We have obtained the following polymerization rate equation: R p = K p [TBTM]1.5 [AIBN]0.5. It shows that the dependence of the polymerization rate on the concentrations of the monomer TBTM and the initiator AIBN are 1.5 and 0.5 order, respectively. The activation energy of polymerization was found to be 18.1 kcal/mol. The activation energy for the degree of polymerization is approximately -12.3 kcal/mol.  相似文献   

12.
The kinetics of the gas-phase thermal iodination of hydrogen sulfide by I2 to yield HSI and HI has been investigated in the temperature range 555–595 K. The reaction was found to proceed through an I atom and radical chain mechanism. Analysis of the kinetic data yields log k (l/mol·sec) = (11.1 ± 0.18) – (20.5 ± 0.44)/θ, where θ = 2.303 RT, in kcal/mol. Combining this result with the assumption E?1 = 1 ± 1 kcal/mol and known values for the heat of formation of H2S, I2, and HI, ΔHf,2980(SH) = 33.6 ± 1.1 kcal/mol is obtained. Then one can calculate the dissociation energy of the HS? H bond as 90.5 ± 1.1 kcal/mol with the well-known values for ΔHf,2980 of H and H2S.  相似文献   

13.
The kinetics of the polymerization of methyl methacrylate (MMA) in the presence of imidazole (Im), 2-methylimidazole (2MIm), or benz-imidazole (BIm) in tetrahydrofuran (THF) at 15–40°C was investigated by dilatometry. The rate of polymerization, Rp , was expressed by Rp = k[Im] [MMA]2, where k = 3.0 × 10?6 L2/(mol2 s) in THF at 30°C. The overall activation energy, Ea , was 6.9 kcal/mol for the Im system and 7.3 kcal/mol for the 2MIm system. The relation between logRp and 1 T was not linear for the BIm system. The polymers obtained were soluble in acetone, chloroform, benzene, and THF. The melting points of the polymers were in the range of 258–280°C. The 1H-NMR spectra indicated that the polymers were made up of about 58–72% of syndiotactic structure. The polymerization mechanism is discussed on the basis of these results.  相似文献   

14.
trans-3-Methyl-4-(p-anisyl)-1,2-dioxetane 1, trans-3-methyl-4-(o-anisyl)-1,2-dioxetane 2 , 3-methyl-3-benzyl-1,2-dioxetane 3 , and 3-methyl-3-p-methoxybenzyl-1,2-dioxetane 4 were synthesized in low yield by the β-bromo hydroperoxide method. The activation parameters were determined by the chemiluminescence method (for 1 ΔG≠ = 22.8 ± 0.3 kcal/mol, Δ≠ = 22.2, ΔS≠ = −1.7 e.u., k60 = 7.6 × 10−3s−1; for 2 ΔG≠ + 23.6 ± 0.3 kcal/mol, ΔH≠ = 22.8, ΔS≠ = −2.2 e.u., k60 = 2.5 × 10−3S−1; for 3 ΔG≠ = 24.0 ± 0.4 kcal/mol, ΔH≠ = 23.1, ΔS≠ = −2.7 e.u., k60 = 1.2 × 10−3S−1; for 4 ΔG≠ = 24.0 ± 0.2 kcal/mol, ΔH≠, = 23.2, ΔS≠, = −2.4 e.u., k60 = 1.2 × 10−3s−1). Thermolysis of 1–4 produced excited carbonyl fragments (direct production of high yields of triplets relative to excited singlets) [chemiexcitation yields ϕT, ϕS, respectively: for 1 0.02, 0.0001; for 2 0.02, 0.0001; for 3 0.03, 0.0002; for 4 0.02, 0.0001]. The effect of paramethoxyaryl substitution was consistent with electronic effects. The ortho substitution in 2 resulted in an increase in stability of the dioxetane, opposite that observed for an electronic effect. The results are discussed in relation to a diradical-like mechanism.  相似文献   

15.
The constants of Lennard-Jones potential functionsE=A/r 12-C/r6 describing CH3...CH3, CH3...H, CH3...C, CH3...O, CH3...N non-bonded interactions were derived using the energy minimization procedure. The effective diameter of CH3 group separated from the other one by four bonds is 3.7Å and corresponding constants of CH3...CH3 interactions areA=7.31·105Å12kcal/mol andC=570Å5 kcal/mol. The potentials found are compatible with those of Scott and Scheraga [1–3].  相似文献   

16.
The kinetics and equilibrium of the gas-phase reaction of CH3CF2Br with I2 were studied spectrophotometrically from 581 to 662°K and determined to be consistent with the following mechanism: A least squares analysis of the kinetic data taken in the initial stages of reaction resulted in log k1 (M?1 · sec?1) = (11.0 ± 0.3) - (27.7 ± 0.8)/θ where θ = 2.303 RT kcal/mol. The error represents one standard deviation. The equilibrium data were subjected to a “third-law” analysis using entropies and heat capacities estimated from group additivity to derive ΔHr° (623°K) = 10.3 ± 0.2 kcal/mol and ΔHrr (298°K) = 10.2 ± 0.2 kcal/mol. The enthalpy change at 298°K was combined with relevant bond dissociation energies to yield DH°(CH3CF2 - Br) = 68.6 ± 1 kcal/mol which is in excellent agreement with the kinetic data assuming that E2 = 0 ± 1 kcal/mol, namely; DH°(CH3CF2 - Br) = 68.6 ± 1.3 kcal/mol. These data also lead to ΔHf°(CH3CF2Br, g, 298°K) = -119.7 ± 1.5 kcal/mol.  相似文献   

17.
A numerical method for calculating the volume of a macromolecule and its first and second derivatives as a function of atomic coordinates is presented. For N atoms, the method requires about 0.3 N ln(N) seconds of CPU time on a VAX-8800 to evaluate the volume and derivatives. As a test case, the method was used to evaluate a pressure-volume energy term in energy minimizations of the protein lysozyme at 1000 atm (1 atm = 1.013 × 105 Pa). R.m.s. gradients of 10?4 kcal/mol/Å were obtained at convergence. The calculated structures exhibited pressure-induced changes which were qualitatively similar to the changes observed in the 1000 atm structure determined by X-ray crystallography.  相似文献   

18.
(?)-β-Caryophyllene (1) adopts three conformations in solution: αα(48%), βα(28%), and ββ(24%). The conformations were identified by an analysis of the 13C- and 1H-NMR spectra at ?87.2 and ?153.8° in connection with APT, HETCOR, and COSY spectra, and subsequent NOESY experiments. The activation parameters of the conversion αα → βα were determined from a bandshape analysis of exchange-broadened 13C-NMR spectra of 8-[methylene-13C]- 1 to give ΔH = 5.9 ± 0.3 kcal/mol, ΔS? = ?8.1 ± 1.8 cal/mol. · K. and ΔG = ?8.3 ± 0.8 kcal/mol. The observed population ratio of the different conformers is best described by MM3.  相似文献   

19.
3‐Methyl‐3‐(3‐pentyl)‐1,2‐dioxetane 1 and 3‐methyl‐3‐(2,2‐dimethyl‐1‐propyl)‐1,2‐dioxetane 2 were synthesized in low yield by the α‐bromohydroperoxide method. The activation parameters were determined by the chemiluminescence method (for 1 ΔH‡ = 25.0 ± 0.3 kcal/mol, ΔS‡ = −1.0 entropy unit (e.u.), ΔG‡ = 25.3 kcal/mol, k1 (60°C) = 4.6 × 10−4s−1; for 2 ΔH‡ = 24.2 ± 0.2 kcal/mol, ΔS‡ = −2.0 e.u., ΔG‡ = 24.9 kcal/mol, k1 (60°C) = 9.2 × 10−4s−1. Thermolysis of 1–2 produced excited carbonyl fragments (direct production of high yields of triplets relative to excited singlets) (chemiexcitation yields for 1: ϕT = 0.02, ϕ ≤ 0.0005; for 2: ϕT = 0.02, ϕS ≤ 0.0004). The results are discussed in relation to a diradical‐like mechanism. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:459–462, 2001  相似文献   

20.
 A replica path method has been developed and extended for use in complex systems involving hybrid quantum/classical (quantum mechanical/molecular mechanical) coupled potentials. This method involves the definition of a reaction path via replication of a set of macromolecular atoms. An “important” subset of these replicated atoms is restrained with a penalty function based on weighted root-mean-square rotation/translation best-fit distances between adjacent (i±1) and next adjacent (i±2) pathway steps. An independent subset of the replicated atoms may be treated quantum mechanically using the computational engine Gamess-UK. This treatment can be performed in a highly parallel manner in which many dozens of processors can be efficiently employed. Computed forces may be projected onto a reference pathway and integrated to yield a potential of mean force (PMF). This PMF, which does not suffer from large errors associated with calculated potential-energy differences, is extremely advantageous. As an example, the QM/MM replica path method is applied to the study of the Claisen rearrangement of chorismate to prephenate which is catalyzed by the Bacillus subtilis isolated, chorismate mutase. Results of the QM/MM pathway minimizations yielded an activation enthalpy ΔH †† of 14.9 kcal/mol and a reaction enthalpy of −19.5 kcal/mol at the B3LYP/6-31G(d) level of theory. The resultant pathway was compared and contrasted with one obtained using a forced transition approach based on a reaction coordinate constrained repeated walk procedure (ΔH †† =20.1 kcal/mol, ΔH rxn = −20.1 kcal/mol, RHF/4-31G). The optimized replica path results compare favorably to the experimental activation enthalpy of 12.7±0.4 kcal/mol. Received: 16 December 2001 / Accepted: 6 September 2002 / Published online: 8 April 2003 Contribution to the Proceedings of the Symposium on Combined QM/MM Methods at the 22nd National Meeting of the American Chemical Society, 2001. Correspondence to: H.L. Woodcock e-mail: hlwood@ccqc.uga.edu Acknowledgements. The authors thank Eric Billings, Xiongwu Wu, and Stephen Bogusz for helpful discussions and related work. The authors also show grateful appreciation to The National Institutes of Health and The National Science Foundation for support of the current research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号