首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以静电纺丝技术制备的TiO_2纳米纤维为基质,通过溶剂热法制备了异质结型稀土Ce掺杂Bi_2MoO_6/TiO_2复合纳米纤维。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、透射电镜(TEM)、紫外-可见漫反射光谱(UV-Vis DRS)以及荧光光谱(PL)等分析测试手段对样品的物相、形貌和光学性能等进行表征。以罗丹明B为模拟有机污染物,研究了样品的可见光催化性能。结果表明:在稀土掺杂样品中,Ce离子进入Bi_2MoO_6晶格,部分取代Bi3+,导致晶胞膨胀,晶格畸变,形成缺陷;与TiO_2复合形成异质结,有利于光生电荷的产生、转移和有效分离,从而提高TiO_2纳米纤维的光催化活性。可见光照射180 min,罗丹明B的降解率达到95.1%。经5次循环光催化降解活性基本不变,样品具有良好的光催化稳定性。  相似文献   

2.
以静电纺丝技术制备的TiO_2纳米纤维为基质和反应物,结合一步水热法制得Gd-N共掺杂SrTiO_3/TiO_2复合纳米纤维光催化剂。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射(UV-Vis DRS)和荧光光谱(PL)等方法对其微观结构、形貌和光学性能进行表征。结果表明:SrTiO_3和TiO_2形成异质结能够使光生电子和空穴得到很好的分离,而Gd-N共掺杂产生新带隙,可以拓宽光谱响应范围至可见光区,并引起晶格缺陷,成为光生电子-空穴对的浅势捕获阱。Gd-N共掺杂与异质结的协同作用有效提高了SrTiO_3/TiO_2复合纳米纤维的可见光催化活性。  相似文献   

3.
以电纺TiO_2纳米纤维为基质,采用溶剂热法制备了稀土Pr掺杂Bi_2MoO_6/TiO_2复合纳米纤维,利用X射线衍射仪、扫描电子显微镜、透射电子显微镜、紫外-可见-近红外分光光度计和荧光光谱仪等对不同样品的物相、形貌和光学性能等进行表征,以甲基橙为模拟有机污染物,考察了样品的光催化性能.结果表明,在复合样品中,Pr~(3+)进入Bi_2MoO_6晶格,部分取代Bi~(3+)形成施主能级,导致能级带隙变窄,不仅有利于提高样品的可见光催化活性,抑制光生电子-空穴对复合,而且还提高了Bi_2MoO_6/TiO_2的光催化活性和稳定性.当Pr的掺杂量为3%(摩尔分数)时,光催化降解甲基橙的效果最佳,可见光照射180 min时降解率达到93.8%,比纯Bi_2MoO_6/TiO_2的降解率有明显提高.  相似文献   

4.
能源危机的威胁在过去二十年里引起了全球性广泛关注。由于地球上具有丰富的太阳能和水资源,光催化分解水制氢被认为是获取绿色能源的一种有效途径。迄今为止,许多光催化剂已经得到了深入研究。其中,TiO_2以其无毒、化学稳定性高、形态可控、光催化活性强等优点得到了广泛的关注。特别是1D结构的TiO_2纳米纤维具有独特的一维电子转移轨迹,较大的吸附能力和较高的光生电子-空穴对(e~--h~+)传输速率等优点在光催化领域更是受到研究人员的青睐。尽管如此,TiO_2仍存在带隙大、光生电子-空穴对复合速率快等缺点,使其在制氢反应(HER)中效率不高。因此,构建高性能、经济、环保的光催化剂是实现太阳能高效转化的一大挑战。最近,各种提高TiO_2光催化活性的策略得到了广泛研究,包括与窄带隙半导体(如ZnIn_2S_4)的耦合等。另外,微波辅助合成技术以其成本低、设备简单、环境无污染、反应速度快等优点,已成为制备光催化半导体材料的一种重要手段。在本工作中,为解决TiO_2带隙宽(约3.2 e V)和电子-空穴对复合速率快等缺点,通过微波辅助合成技术快速地将2D结构的ZnIn_2S_4纳米片原位组装在TiO_2纳米纤维上,构筑2D/1D ZnIn_2S_4/TiO_2S型异质结。通过调节ZnIn_2S_4前驱体与TiO_2NFs的摩尔比,可以很容易地控制TiO_2纳米纤维上ZnIn_2S_4负载量。实验结果表明:相对于纯ZnIn_2S_4和TiO_2而言,ZnIn_2S_4/TiO_2异质结光催化剂在太阳光照射下的光吸收和制氢性能得到明显提高。在优化条件下,样品ZT-0.5 (ZnIn_2S_4与TiO_2的摩尔比为0.5)具有最佳制氢性能,达到8774mmol·g~(-1)·h~(-1),分别是纯TiO_2纳米纤维(3312mmol·g~(-1)·h~(-1))和ZnIn_2S_4 (3114mmol·g~(-1)·h~(-1))纳米片的2.7倍和2.8倍。基于实验结果,我们提出来一种在ZnIn_2S_4和TiO_2间形成的S型异质结机理,并很好地阐释了ZnIn_2S_4/TiO_2复合材料光催化制氢活性增强的原因。  相似文献   

5.
运用溶胶-凝胶法同步获得了LaCoO_3钙钛矿晶格结构内Mg~(2+)的掺杂改性及晶格结构外MgO的异质结复合改性。观察到了同步改性后LaCoO_3催化剂上水体罗丹明B(RhB)光催化降解活性的显著提升,相同实验条件下最适Mg含量改性LaCoO_3上RhB的降解率从原始LaCoO_3的58%显著提升至98%,表观一级动力学常数为改性前催化剂的4.5倍。运用X射线衍射(XRD)、氮气低温吸附-脱附(BET法)、扫描及透射电子显微镜(SEM,TEM)、傅里叶变换红外光谱(FT-IR)、X光电子能谱(XPS)、紫外-可见漫反射(DRS)及光致发光光谱(PL)等分析和表征系统探讨了改性前后催化剂的理化特征。结果表明,约10%Co~(3+)晶格结点可为Mg~(2+)掺杂取代而LaCoO_3钙钛矿结构基本保持不变,适量Mg~(2+)对Co~(3+)的掺杂取代可形成晶格畸变和杂质能级、衍生Co~(4+)及促进溶氧吸附从而有利于RhB的光催化降解,过量掺杂的Mg则可能成为光生载流子复合中心从而不利于RhB的去除。适量MgO异质结复合改性LaCoO_3一方面赋予复合催化剂较大表面积,利于RhB富集,也赋予丰富的表面羟基利于光生电子的捕获并衍生活性羟基自由基;另一方面还可能通过LaCoO_3与MgO异质结间电子的跃迁和流动以及晶格氧空位抑制光生载流子的复合,提高复合催化剂的光量子效率。  相似文献   

6.
随着工业化的快速发展,化石燃料等不可再生能源的快速消耗,人类将面临不可预测的能源危机.寻找有效的方法来解决能源短缺问题已成为当今的重要研究课题.氢能是一种可以替代化石燃料的清洁可再生能源.利用半导体光催化分解水制氢技术可以将太阳能转化为氢能.目前,在已开发的半导体光催化材料中, TiO_2因具有无毒、稳定、廉价等优点而备受光催化领域关注.但是,在实际应用方面, TiO_2的光催化效率受限于其低的光子利用率和较高的光生电子-空穴复合率.许多研究表明, TiO_2不同晶面的协同作用有利于光生载流子的迁移分离,并且适量的掺杂能够捕获光生电子,从而抑制其复合.而镧系元素因其特殊4f电子结构受到广泛的关注.采用物理或化学方法将镧系离子引入TiO_2晶格中,可以影响光生电子和空穴的动力学过程,延长光生载流子的分离状态,从而提高光催化活性.本文通过简单溶剂热法成功合成了镧系离子掺杂{001}/{101}面共暴露的TiO_2纳米片.X-射线粉末衍射(XRD)、X-射线光电子能谱(XPS)和高分辨透射电子显微镜(HRTEM)的表征结果证明了镧系离子选择性掺杂在TiO_2纳米片{101}面上.结合紫外可见吸收光谱、稳态荧光、瞬态荧光衰减曲线、光电流及莫特-肖特基曲线等手段对镧系离子掺杂TiO_2光催化剂进行了表征,结果表明,镧系离子掺杂TiO_2纳米片增强了对光的吸收,同时延长光生载流子的分离状态,阻碍光生电子和空穴的复合.考察其光催化分解水制氢的性能.研究表明,在相同掺杂量(0.5 mol%RE~(3+)=Ho~(3+), Er~(3+), Tm~(3+), Yb~(3+), Lu~(3+))的TiO_2纳米片中, Yb~(3+)-TiO_2纳米片光催化剂具有优异的产氢活性,在模拟太阳光照射1 h后产氢量是纯TiO_2的4.25倍.同时讨论了不同浓度助催化剂Pt作用下的Yb~(3+)-TiO_2纳米片产氢效果,当Pt含量量为0.3wt%时,光解水产氢活性最佳, Pt/Yb~(3+)-TiO_2纳米片的产氢量是Yb~(3+)-TiO_2的2倍,纯TiO_2的8.5倍.光催化分解水产氢活性的显著提高可以归因于光生电子-空穴对在TiO_2纳米片{001}/{101}面的快速分离,以及镧系离子4f电子轨道对电子的捕获和杂质能级的产生减小了禁带宽度,这不仅延长了光生载流子的分离状态,增加了H~+还原成H_2的机会,而且还可以拓展可见光的吸收范围.可见,利用镧系离子掺杂TiO_2和共暴露{001}/{101}面协同作用是一种实现TiO_2基光催化活性提高的有效方法之一.镧系离子掺杂的策略对提高半导体纳米材料的光催化活性有显著的影响,可能在光催化、光电化学和太阳能电池领域有更广泛的应用.  相似文献   

7.
以TiCl_3和InCl_3为Ti源和In源,在不使用还原剂的条件下,首先通过液相沉淀反应制备前驱体沉淀,然后采用后续水热处理制备Ti~(3+)自掺杂的TiO_2(A)/TiO_2(R)/In_2O_3纳米异质结,考察了水热处理温度对材料结构和性能的影响。利用X射线衍射、透射电子显微镜、X射线光电子能谱和紫外-可见漫反射光谱对样品进行表征。分别以罗丹明B和苯酚溶液为模拟废水评价了样品的可见光催化降解性能。结果表明,与纯的TiO_2、In2O_3以及Ti~(3+)自掺杂的TiO_2相比,Ti~(3+)自掺杂的TiO_2(A)/TiO_2(R)/In_2O_3纳米异质结在可见光区有明显的吸收,并具有良好的可见光催化降解性能,200℃下水热处理24h所得样品光催化降解罗丹明B的反应速率常数(0.0444min-1)分别是纯TiO_2和In_2O_3的17.76倍和8.71倍。瞬态光电流时间响应结果表明样品的光催化性能主要来源于TiO_2(A)/TiO_2(R)/In_2O_3纳米异质结导致的提高的光生电子和空穴分离效率。  相似文献   

8.
太阳能光催化技术广泛应用于处理环境污水中.Z型光催化剂体系具有较强的氧化还原能力,降低半导体的带隙,且使导带更负,价带更正,有效拓宽光生电子-空穴空间距离,抑制其复合,大大提高了光催化剂的催化性能,因此,构筑直接的Z型光催化体系已成为光催化领域的研究热点之一.TiO_2具有较好的光催化性能和良好的化学稳定性,但其禁带较宽,只能被太阳光中约占4%的紫外光激发,对太阳光中约占50%的可见光不响应,且光生电子-空穴易复合.g-C_3N_4是非金属光催化剂,具有较好的光催化活性,可见光吸收非常强,但比表面积较小,光生电子-空穴易复合.还原氧化石墨烯(RGO)具有大的比表面积和优异的传输载流子能力,可显著提高光催化剂的比表面积,同时降低电子空穴复合效率,从而在一定程度上改善光催化剂性能.大量研究证实, TiO_2/g-C_3N_4/RGO三元异质结的光催化性能明显优于单组份TiO_2, g-C_3N_4和二元TiO_2/g-C_3N_4光催化剂,但现有制备工艺复杂且耗时,因此,简易地构筑具有高光催化性能的Z型TiO_2/g-C_3N_4/RGO三元异质结仍具有挑战性.本文采用简易的直接电纺法构筑了高光催化活性的Z型TiO_2/g-C_3N_4/RGO三元异质结光催化剂,通过调节尿素的用量成功制备了一系列不同形貌的TiO_2/g-C_3N_4/RGO三元异质结.并采用X-射线衍射、红外光谱、拉曼光谱、X射线光电子能谱、扫描电子显微镜、透射电子显微镜、紫外-可见漫反射吸收光谱、氮气吸附-脱附测试、光电化学测试和荧光光谱等技术对所制备样品的晶型、组成、形貌、光捕获能力、载流子分离能力、比表面积、光电流、阻抗、光降解性能以及羟基自由基的生成进行系统性测试.以罗丹明B为目标探针分子,考察了模拟太阳光下所制备的光催化剂的光催化活性,结果表明,尿素添加量为0.6g时,电纺构筑的TiO_2/g-C_3N_4/RGO三元异质结在60min具有99.1%的光催化降解效率,显著优于纯TiO_2, g-C_3N_4,二元TiO_2/g-C_3N_4以及制备的其它TiO_2/g-C_3N_4/RGO三元异质结光催化剂.基于光电化学测试、活性物种淬灭实验和荧光光谱分析测试羟基自由基等分析结果,提出了一个合理的Z型增强光催化活性机理.  相似文献   

9.
以电纺TiO_2纳米纤维为基质,采用一步水热法合成了Bi@Bi_2Sn_2O_7/TiO_2等离子体复合纤维光催化剂。利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、紫外-可见漫反射(UV-Vis DRS)和光致发光光谱(PL)等分析测试手段对样品的物相、形貌和光电性能等进行表征。以三乙醇胺为电子给体,研究了Bi@Bi_2Sn_2O_7/TiO_2复合纤维光催化裂解水制氢的反应过程。结果表明:在水热过程中,Bi_2Sn_2O_7构筑在TiO_2纳米纤维表面形成p-n结的同时,部分Bi3+被葡萄糖还原成金属Bi沉积在Bi_2Sn_2O_7上。金属Bi的等离子体共振效应与p-n结的协同作用,有效提高了样品的光催化活性,产氢速率达到7.26 mmol·h~(-1)·g~(-1)。  相似文献   

10.
TiO_2具有合适的能带位置以及成本低、无毒、稳定性高等优点,但由于大的激子结合能(130 meV)以及电子-空穴复合严重,其光催化性能和效率较低.目前,负载助催化剂是一种比较有效的提高TiO_2光催化效率的方法.助催化剂可通过抑制电子与空穴的复合、降低激子结合能、提高界面电子传输速率来提高光催化性能.寻求新型、廉价、高效产氢的助催化剂是当前光催化研究的热点.近年来, Ni(OH)_2由于具有多变的形貌以及一定的光催化性能而被人们关注.并且Ni(OH)_2本身就是p型光催化剂,可与主体材料复合形成p-n异质结材料,其中由异质结形成的内建电场可起到促进电子与空穴分离的作用.基于此,本文采用简单的合成方法制备出新颖的三维花状Ni(OH)_2包裹TiO_2纳米结构微球,通过X射线衍射仪(XRD)、扫描电镜(SEM)和透射电镜(TEM)等表征手段确定了目标产物被成功合成,并采用光催化产氢为探针反应研究了其光催化性能.结果表明, Ni(OH)_2包裹TiO_2纳米材料的产氢速率比纯TiO_2纳米材料提高了5倍.通过紫外-可见漫反射吸收光谱(DRS)与一系列对比实验发现, Ni(OH)_2拓宽了TiO_2的吸收光谱范围,催化活性的提高确实来源于引入的Ni(OH)_2.氮气吸脱附等温线和孔径分布分析表明, Ni(OH)_2壳的引入增大了催化剂的比表面积并且带来介孔,证实三维花状的纳米片界面为光催化产氢提供了更多的活性位点.电化学表征结果进一步证明,这种独特的p-n异质结促进了电子与空穴的分离和转移.基于元素分析和产氢活性结果,我们提出了可能的反应机理.  相似文献   

11.
随着世界经济的迅猛发展,人们生活水平飞速提高的同时,能源短缺和环境污染成为当前人类可持续发展过程中的两大严峻问题.氢作为一种能源载体,能量密度高,可储可运,且燃烧后唯一产物是水,不污染环境,被认为是今后理想的无污染可再生替代能源.20世纪60年代末,日本学者Fujishima和Honda发现光照n-型半导体TiO_2电极可导致水分解,使人们认识到了利用半导体光催化分解水制氢可直接将太阳能转化为氢能的可行性,利用半导体光催化分解水制氢逐渐成为能源领域的研究热点之一.然而,单相光催化材料的光生电子和空穴复合仍然严重,光催化制氢效率低,无法满足实际生产需要;另外,单相光催化材料不能同时具备较窄的禁带、较负的导带和较正的价带.近年来,国内外学者在新型光催化材料的探索、合成和改性以及光催化理论等领域开展了大量研究工作.不断有不同种类的半导体材料被研究和发展为光催化分解水制氢催化材料.例如,具有可见光催化活性的阴、阳离子掺杂TiO_2,具有可见光下光解纯水能力的In_(0.9)Ni_(0.1)TaO_4,在256 nm紫外光辐照下量子效率达到56%的镧掺杂NaTaO_3,CdS以及(AgIn)_xZn_(2(1-x))S_2等.在现有的光催化材料中,单相光催化材料可以通过掺杂、形貌控制合成、晶面控制合成、染料敏化和表面修饰等提高其光催化活性.复合型光催化材料则能通过组合不同电子结构的半导体材料并调控其光生载流子迁移获得优异的光催化制氢性能,大幅拓展了光催化制氢材料的研究范围和提升了光催化制氢性能.构建异质结能够有效提高光生电子-空穴分离效率,促使更多的光生电子参与光催化制氢反应,提高其氧化还原能力,从而提高其光催化制氢效率.在I-型纳米异质结中,半导体A的价带高于半导体B,而导带则是前者高于后者,光照时,光生电子-空穴对的迁移速率是不同的,延长了光生电子的寿命,从而提高了材料的光催化活性.但是在I-型异质结中,电子和空穴都集中在B半导体上,这样光生电子-空穴对的复合几率仍然很高.II-型异质结中电子和空穴的富集处各不相同,因此使用范围也更广泛一些.光辐照激发时,光生电子从半导体B的导带迁移到半导体A的导带上,而空穴则从半导体A的价带向半导体B的价带上转移,从而形成了载流子的空间隔离,有效抑制其复合.但是,在这个类型的异质结中,光生电子转移到了相对位置较低的导带,而空穴则转移到相对位置较高的价带,这样就降低了光生电子的还原能力和空穴的氧化能力.pn型异质结中,在两种半导体相互接触时,由于电子-空穴对的扩散作用,两种半导体的能带发生漂移,其中p型上移,n型下移.而且在两种半导体异质结的界面处会产生空间电荷层,在这个电荷层的作用下,在异质结界面上形成内建电场.在合适波长的光源辐照的条件下,两种半导体同时被激发,光生电子在内建电场的作用下,从p型半导体快速迁移到n型半导体上,而n型半导体中留在价带上的空穴则快速迁移到p型半导体上,这样光生电子-空穴对就得到了有效的分离.在以Z型载流子迁移为主导的异质结构材料中摈弃了中间媒介,通过控制界面的载流子迁移使低能量的光生电子与空穴直接复合保留高能量的光生电子-空穴,从而提高了材料的光催化效率.本文介绍了纳米异质结光催化剂在设计合成方面的研究进展,总结了几种纳米异质结(I-型、II-型、pn-型及Z-型)的光催化原理及其在制取氢气方面的研究进展,并展望了研究发展方向.期望本文能够加深研究者对该领域的理解,为今后高效光催化材料的设计提供帮助和指导.  相似文献   

12.
TiO_2广泛用作半导体光催化材料,但由于自身对光利用率低(只吸收紫外光)、禁带宽度较大、光生载流子复合率极高,限制了它在相关领域的应用.为此,设计了Ti~(3+)离子自掺杂来克服TiO_2半导体材料的上述缺点,进而提高其光催化活性.在不引入其他元素的情况下,以TiOF_2为原料,Zn粉为还原剂,在水热条件下采用拓扑相变法原位制备了具有可见光响应的Ti~(3+)自掺杂空盒状TiO_2(记为Ti~(3+)/TiO_2)催化剂材料.掺杂金属离子可以改变半导体TiO_2的结晶度和产生晶格缺陷,形成电子或空穴的捕获中心,影响电子-空穴对的复合;同时,掺杂金属离子产生的晶格缺陷有利于Ti~(3+)和氧空位的形成,有利于提高TiO_2的量子效率.Ti~(3+)掺杂是一种既清洁又未引入其他金属离子的掺杂改性方法,它能有效保持催化剂的结构和形貌不受其他金属离子的影响.总之,金属离子掺杂有效拓展了TiO_2的光吸收范围,并极大地提高了TiO_2的光催化活性.本文研究了不同量的还原剂对催化剂空盒状TiO_2结构形貌影响,以及在可见光下光催化降解罗丹明B反应性能,发现Ti~(3+)/TiO_2催化剂均拥有非常好的光催化活性,其中R0.25催化剂在可见光下120 min,RhB降解率达到96%,是TiO_2的4倍多.且可循环使用5次的光催化循环降解实验后,表现出较高的稳定性.催化剂经过Ti~(3+)自掺杂后,对催化剂自身的空盒状结构形貌并无很大的影响,随着还原剂Zn粉的量增加,Ti~(4+)还原形成Ti~(3+)数量增加,导致形成更多的氧空位.皆为锐钛矿型TiO_2,与未掺杂Ti~(3+)的TiO_2比较发现,自掺杂Ti~(3+)的TiO_2的(105)XRD衍射峰越来越尖锐,(004)衍射峰越来越宽.随着还原剂Zn粉质量的逐渐增加,催化剂的光响应范围拓宽到可见光区,且逐渐增强.这说明Ti~(3+)的掺杂不仅提高了TiO_2在可见光的响应能力,也提高了TiO_2在紫外光范围的响应能力.另外,掺杂后的TiO_2禁带宽度的减小,使其价带上的电子更容易被可见光激发,产生更多的电子-空穴对参与光催化反应,从而提高TiO_2的光催化效率.  相似文献   

13.
以五水硝酸铋为铋源,采用简易的一步水热法合成出Bi_2MoO_6/CoMoO_4绣花球结构。通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)、紫外-可见漫反射光谱(UV-Vis DRS)、荧光光谱(PL)和电化学测试等表征对所制备催化剂的物相组成、微观形貌、光学性质以及光生电荷复合效率进行了分析。研究结果表明,引入Bi_2MoO_6之后,Bi_2MoO_6/CoMoO_4复合异质结的光吸收范围明显被拓宽,其光生电荷的分离率也得到了提升。以亚甲基蓝和头孢曲松钠为污染物来模拟废水,在可见光的条件下评估催化剂样品的光催化降解活性。在可见光下光照60 min后,Bi_2MoO_6负载量为30%(w/w)的复合物具有最佳的光催化性能,其降解速率常数约为纯CoMoO_4的2倍。基于实验的所有表征,进一步地研究了Bi_2MoO_6/CoMoO_4体系相应的光催化机理。  相似文献   

14.
通过半导体催化剂利用太阳能分解水制氢被认为是解决人类面临的环境问题和能源危机的有效途径.在众多的半导体光催化剂中,TiO2由于其良好的光化学稳定性、无毒性、丰富的形貌以及低廉的价格,在光催化制氢领域备受关注.然而TiO2的内在缺陷,如较宽的带隙、较窄的光响应范围,光生电子空穴对的快速复合,极大限制了其太阳能制氢效率.构建异质结结构被认为是解决以上问题的一个有效方法,通过将TiO2与另一个半导体复合可以提升催化剂对太阳光的吸收范围,也可降低光生电子空穴对的复合速率.但构建一个成功的异质结结构不仅要满足上述的要求,还需要保留异质结催化剂体系中光生电子和空穴的氧化还原能力.研究表明,S型异质结是将两个具有合适能带结构的半导体进行耦合,由于费米能级的差异,两个半导体间将发生电子转移,从而引起能带弯曲并形成内建电场.光照条件下,具有较弱还原能力的光生电子在内建电场和能带弯曲的作用下与较弱氧化能力的光生空穴复合,实现异质结催化剂体系中各个半导体内部光生载流子有效分离的目标,同时保留了异质结催化剂体系中较强氧化能力和较强还原能力的光生电子和空穴,进而实现光催化活性的提高.本文采用水热合成方法,将具有更强还原能力和可见光响应特性的半导体(ZnIn2S4)原位生长在TiO2纳米纤维表面,构建了1D/2DTiO2/ZnIn2S4S型异质结光催化剂.最优比例的TiO2/ZnIn2S4复合材料表现出优越的光催化制氢活性(6.03mmol/h/g),分别是纯TiO2和纯ZnIn2S4制氢活性的3.7倍和2倍.TiO2/ZnIn2S4复合材料光催化活性的提高可以归因于紧密的异质结界面、光生载流子的有效分离、丰富的反应活性位点以及增强的光吸收能力.通过原位XPS和DFT计算研究了异质结内部光生电子的转移机制.结果表明,在光照条件下电子由TiO2向ZnIn2S4迁移,遵循了S型异质结内部电子的转移机制,实现了TiO2和ZnIn2S4内部光生载流子的有效分离,同时保留了具有较强还原能力的ZnIn2S4价带电子和较强氧化能力的TiO2导带空穴,从而显著提升光催化制氢效率.综上,本文制备的TiO2/ZnIn2S4S型异质结光催化剂很好地克服了TiO2在光催化制氢领域所面临的诸多障碍,为设计和制备高效异质结光催化剂提供了新的思路.  相似文献   

15.
采用溶胶-超声辐照技术同步合成了生物质C-N-P自掺杂TiO_2复合催化剂,通过X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电子显微镜(FESEM)、紫外-可见漫反射光谱(UV-Vis-DRS)及光致发光光谱(PL)对样品进行了表征.以亚甲基兰(MB)为目标污染物,研究了C-N-P共掺杂TiO_2的可见光光催化性能.实验结果表明,在可见光照射下,光催化反应时间为2 h时,C-N-P共掺杂TiO_2复合催化剂对亚甲基兰的降解效率最高可达9 8.5%;相比纯TiO_2,C-N-P共掺杂TiO_2复合催化剂的比表面积增大,吸收边带红移,禁带宽度减小,相变温度升高,光生载流子复合率降低.  相似文献   

16.
为了研究复合光催化剂在光催化中的制氢效率,采用水热法制备了Mo S2纳米片,然后通过水热法在Mo S2纳米片上负载了TiO_2纳米颗粒,形成了Mo S2/TiO_2异质结复合催化剂。采用冷场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、紫外-可见吸收光谱(UV-Vis)、拉曼光谱(Raman),X射线光电子能谱(XPS)对材料的结构和光学性能表征并进行分析。通过光催化制氢测试对光催化剂进行评价,实验结果表明,在波长为365 nm的紫外光照射下,最高光催化制氢速率为1004μmol·h-1·g-1,对应的催化剂的Mo S2含量为30%,其催化速率远大于单一的Mo S2和TiO_2,表明Mo S2/TiO_2复合催化剂在紫外光照下能显著提高光催化产氢性能。基于Mo S2/TiO_2复合光催化剂优越的光催化产氢性能,本文对复合光催化剂的产氢机理做了研究和分析。  相似文献   

17.
异质结型Er2O3/TiO2复合纳米纤维制备及光催化性能   总被引:1,自引:0,他引:1  
采用静电纺丝技术与溶剂热法相结合,制备了异质结型Er2O3/TiO2复合纳米纤维光催化材料。利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、高分辨透射电镜(HRTEM)和紫外-可见吸收光谱(UV-Vis)等分析测试手段对材料进行表征,并以罗丹明B(RB)的脱色降解为模式反应,考察了材料的光催化性能。实验结果表明:Er2O3纳米粒子均匀地负载在TiO2纤维上,形成了异质型Er2O3/TiO2复合纳米纤维光催化材料,拓宽了光谱响应范围,有利于TiO2光生电子和空穴的分离,增强了体系的量子效率。与纯TiO2纳米纤维相比光催化活性明显提高,对RB的紫外光降解率达93.93%。  相似文献   

18.
Ag_2CO_3是一种典型的银基半导体,可在可见光照射下降解各种有机染料,但制备成本高,光腐蚀严重,稳定性差,难以循环利用等,因而限制了它的实际应用.针对这些问题,目前多数的改进措施是构建异质结,有效的分离光生电子与空穴来提高Ag_2CO_3的光催化性能.比如典型的异质结光催化剂有TiO_2/Ag_2CO_3,Ag_2CO_3/Zn O,Ag_2O/Ag_2CO_3和Ag X/Ag_2CO_3等.也有在表面化学沉积,光化学还原Ag等贵金属形成等离子体等方式提高其光催化性能,但是很少通过特殊形貌控制以提高Ag_2CO_3的光催化性能.最近的研究表明,由于多尺度微球结构催化剂具有高效的光捕能力,同时具有比表面积大、易沉降,良好的物质传输能力和表面的渗透性,因而在液相光催化反应中具有明显的优势.因此,我们期望制备出一个多尺度微球结构Ag_2CO_3光催化剂.CaMg(CO_3)_2是一种具有微球结构的半导体,它与Ag_2CO_3有相同的阴离子结构,但是两者在水溶液中的溶解度相差较大,利用这个特性理论上可以将两个不同的半导体结合在一起,得到一种新型的复合微球.本文以CaMg(CO_3)_2微球为硬模板,通过简单的离子交换成功制备了粒径约为10mm的CaMg(CO_3)_2@Ag_2CO_3微球.利用X射线衍射、N_2物理吸附、扫描电镜、傅里叶变换红外光谱和紫外-可见漫反射吸收光谱、光电流等手段对在不同反应时间与温度下制得的CaMg(CO_3)_2与Ag_2CO_3的复合物进行了表征.结果表明,在40°C下Ag~+与Ca~(2+)、Mg~(2+)离子交换4 h后,得到了一种多尺度CaMg(CO_3)_2@Ag_2CO_3复合微球.此时,微球中Ag_2CO_3的含量约为2.56%.结果表明,这种具有多尺度结构的复合微球能够增强可见光的吸收.电化学阻抗测试和光电流测试表明,CaMg(CO_3)_2核的存在可以降低光生载流子的迁移阻力,进而促进光生电子与空穴的分离.在光降解酸性橙II的测试中,核壳结构的CaMg(CO_3)_2@Ag_2CO_3复合微球表现出了更高的催化活性,而且具有更好的循环使用性能.同时,相对于纯Ag_2CO_3光催化剂来说,CaMg(CO_3)_2@Ag_2CO_3复合微球制备的成本大幅度降低.ESR测试证明了?OH为CaMg(CO_3)_2@Ag_2CO_3复合微球光催化过程中的主要活性物质.  相似文献   

19.
采用溶胶-凝胶法制备了LiGd(MoO_4)_2∶Dy~(3+),Eu~(3+)系列荧光粉。用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)、荧光光谱仪等对所得样品的结构、形貌和发光性能进行了表征,并研究了其能量传递机理。结果表明:白钨矿结构的Li Gd(Mo O_4)_2∶Dy~(3+),Eu~(3+)荧光粉的形貌为不规则颗粒,其粒径为1.8μm。在354 nm近紫外光激发下,该荧光粉显示出Dy~(3+)的特征黄、蓝光发射和Eu~(3+)的特征红光发射。计算Dy~(3+)和Eu~(3+)的临界距离为1.383 nm,Dy~(3+)→Eu~(3+)之间能量传递机理为偶极-四极相互作用。通过调节Dy~(3+)、Eu~(3+)的掺杂浓度,荧光粉可实现暖白光发射。此外,详细研究了稀土离子(Dy~(3+),Eu~(3+))的掺杂浓度与荧光粉的色温值之间的关系。  相似文献   

20.
以静电纺丝技术制备的稀土Yb~(3+)和Er~(3+)共掺杂TiO_2纳米纤维为基质,结合水热法合成了Bi复合Yb~(3+),Er~(3+)∶TiO_2纳米纤维光催化剂。以三乙醇胺为牺牲剂,研究了Bi/Yb~(3+),Er~(3+)∶TiO_2的紫外、可见、近红外和全谱光催化产氢性能。结果表明:全谱光照5 h,产氢速率达到1 650.3μmol·g~(-1)·h~(-1)。Bi作为一种新兴的非贵金属具有独特的等离子体光催化或辅助光催化性能,能与稀土元素丰富的能级结构和特殊的上转换发光特性相结合。对TiO_2进行双重协同修饰改性,可以有效提高TiO_2纳米纤维的光催化活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号