首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
杨磊  吴建生  张澜庭 《中国物理》2004,13(4):516-521
We have prepared the skutterudite-related compounds FeCo_3Sb_{12} and La_{0.75}Fe_3CoSb_{12} with different average grain sizes (about 0.8 and 3.9μm) by hot pressing. Samples were characterized by XRD, EPMA and SEM. The lattice thermal conductivity was investigated in the temperature range from room temperature to 200℃. Based on the Debye model, we analyse the change in lattice thermal conductivity due to various phonon scattering mechanisms by examining the relationship between the weighted phonon relaxation time τ(ω/ω_D)^2 and the reduced phonon frequency ω/ω_D. The effect of grain boundary scattering to phonon is negligible within the range of grain sizes considered in this study. The large reduction in lattice thermal conductivity of FeCo_3Sb_{12} compound contributes to the electron-phonon scattering. As for La_{0.75}Fe_3CoSb_{12} compound, the atoms of La filled into the large voids in the structure of the skutterudite produce more significant electron-phonon scattering as well as more substitute of Fe at Co site at the same time. Moreover, the point-defect scattering appears due to the difference between the atoms of La and the void. In addition, the scattering by the rattling of the rare-earth atoms in the void is another major contribution to the reduced lattice thermal conductivity. Introducing the coupling of the electron-phonon scattering with the point-defect scattering and the scattering by the rattling of the rare-earth atom is an effective method to reduce the lattice thermal conductivity of the skutterudite-related compounds by substitution of Fe for Co and the atoms of La filled in the large voids in the skutterudite structure.  相似文献   

2.
霍龙桦  谢国锋 《物理学报》2019,68(8):86501-086501
由于纳米结构具有极高的表体比,声子-表面散射机制对声子的热输运性质起到关键作用.提出了表面低配位原子对声子的散射机制,并且结合量子微扰理论与键序理论推导出该机制的散射率.由于散射率正比于材料的表体比,这种散射机制对声子输运的重要性随着纳米结构尺寸的减小而增大.散射率正比于声子频率的4次方,所以这种散射机制对高频声子的作用远远强于对低频声子的作用.基于声子玻尔兹曼输运方程,计算了硅纳米薄膜和硅纳米线的热导率,发现本文模型比传统的声子-边界散射模型更接近实验值.此发现不仅有助于理解声子-表面散射的物理机制,也有助于应用声子表面工程调控纳米结构的热输运性质.  相似文献   

3.
We investigate the phonon transmission and thermal conductance in a general Fibonacci quasicrystal by the model of lattice dynamics and the technique of transfer matrix. It is found that quasiperiodic distribution of masses may greatly destroy the phonon transport at both low and high frequencies and thus may affect the thermal conductance. The thermal conductance increases with temperature at low temperatures and displays saturation with further increase of the temperature. Such saturation behaviour is preserved even when the mass ratio of atoms in the Fibonacci chain is changed.  相似文献   

4.
周欣  高仁斌  谭仕华  彭小芳  蒋湘涛  包本刚 《物理学报》2017,66(12):126302-126302
利用非平衡格林函数方法研究了石墨纳米带中三空穴错位分布对热输运性质的影响.研究结果发现:三空穴竖直并排结构对低频声子的散射较小,导致低温区域三空穴竖直并排时热导最大,而在高频区域,三空穴竖直并排结构对高频声子的散射较大,导致较高温度区域三空穴竖直并排时热导最小;三空穴的相对错位分布仅能较大幅度地调节面内声学模高频声子的透射概率,而三空穴的相对错位分布能较大幅度地调节垂直振动膜高频声子和低频声子的透射概率,导致三空穴的相对错位分布不仅能大幅调节面内声学模和垂直振动模的高温热导,也能大幅调节垂直振动模的低温热导.研究结果阐明了空穴位置不同的石墨纳米带的热导特性,为设计基于石墨纳米带的热输运量子器件提供了有效的理论依据.  相似文献   

5.
Cubic scandium trifluoride (ScF3) has a large negative thermal expansion over a wide range of temperatures. Inelastic neutron scattering experiments were performed to study the temperature dependence of the lattice dynamics of ScF3 from 7 to 750 K. The measured phonon densities of states show a large anharmonic contribution with a thermal stiffening of modes around 25 meV. Phonon calculations with first-principles methods identified the individual modes in the densities of states, and frozen phonon calculations showed that some of the modes with motions of F atoms transverse to their bond direction behave as quantum quartic oscillators. The quartic potential originates from harmonic interatomic forces in the DO9 structure of ScF3, and accounts for phonon stiffening with the temperature and a significant part of the negative thermal expansion.  相似文献   

6.
研究了异侧非重叠三封闭端量子波导中的声学声子传输和热导率性质。结果表明:由于激发模的产生,总传输系数在整数约化频率的时发生跳跃;各个激发模所产生的温度条件不一样,温度越高,被激发的模越多,并且高阶模对热导的影响较小;声子传输和热导性质与不连续结构的形状和位置有直接的关系,声子传输和热导性质对量子线的温度环境相当敏感。  相似文献   

7.
姚凌江  王玲玲 《物理学报》2008,57(5):3100-3106
采用散射矩阵方法,研究了在应力自由和硬壁两种典型的边界条件下含半圆弧形腔的量子波导中声学声子输运和热导性质.结果表明在两种边界条件下声子透射谱和热导有着不同的特征.在应力自由边界条件下,能观察到普适的量子化热导现象,当结构为一理想的量子线时,在低温区域有一个量子化平台出现,而当半圆弧形结构存在时,非均匀横向宽度引发的弹性散射使得量子化平台被破坏;在硬壁边界条件下,不可能观察到量子化热导现象,热导随温度的增加单调上升;计算结果表明还可以通过调节半圆弧形结构的半径来调控声子的输运概率和热导. 关键词: 声学声子输运 热导 量子体系  相似文献   

8.
卿前军  周欣  谢芳  陈丽群  王新军  谭仕华  彭小芳 《物理学报》2016,65(8):86301-086301
采用非平衡格林函数方法, 在保持总的能量输出通道中石墨链数不变的条件下, 研究并比较了并列的石墨纳米带通道中弹性声学声子输运和热导特性. 结果表明, 能量输出通道的增加能降低每个能量输出通道的热导; 与能量输入热库最近的能量输出通道热导最大, 最远的能量输出通道热导最小; 中间能量输出通道的热导性质与并列的各输出通道的结构参数密切相关, 最近和最远的能量输出通道的热导性质仅与各自能量输出通道的结构参数有关; 粗糙边缘结构能有效调节各通道的热导; 总的热导性质与能量输出通道石墨链数、能量输出通道数以及边缘结构粗糙程度密切相关.  相似文献   

9.
石零  米铁  刘延湘 《低温与超导》2006,34(3):176-178
声子传递系数是影响低温接触界面热传导的重要因素,文中对中间低温(20K~200K)接触传导模型的声子传递系数进行了讨论,分析了接触界面温差、弹性镜面传递和散射传递下的声子传递系数;还讨论了热流方向对声子传递系数的影响;指出了声失配理论预测值与实验值间存在差别的可能原因。该讨论对分析接触热传导有一定意义。  相似文献   

10.
The effect of phonon scattering by surface roughness on the thermal conductance in mesoscopic systems at low temperatures is calculated using full elasticity theory. The low frequency behavior of the scattering shows novel power law dependences arising from the unusual properties of the elastic modes. This leads to new predictions for the low temperature depression of the thermal conductance below the ideal universal value. Comparison with the data of Schwab et al. [Nature (London) 404, 974 (2000)] suggests that surface roughness on a scale of the width of the thermal pathway is important in the experiment.  相似文献   

11.
We study the effects of contact shape on ballistic phonon transport in semiconductor nanowires at low temperatures using an approximative scalar model of continuum elasticity. Five different contacts connected to two semiconductor nanowires with different transverse widths are discussed. Numerical results show that the contact shape acts as an ‘acoustic impedance adaptor’, playing a crucial role on the ballistic phonon transmission and thermal conductance. The phonon coupling in the contacts with certain length facilitates ballistic phonon transmission compared to the abrupt interface, in which the phonon scattering is the strongest. It is found that the more the contact is abrupt, the smaller the thermal conductance is. The catenoidal contact rather than the abrupt interface is also the competitive candidate to obtain bigger thermal conductance. These results indicate that choosing an appropriate contact shape is one of the most critical factors to accurately measure the thermal conductance with a very high precision and reliability in different temperature ranges at low temperatures.  相似文献   

12.
Wan C  Qu Z  He Y  Luan D  Pan W 《Physical review letters》2008,101(8):085901
Ultralow thermal conductivity (1.1 W/m.K, 1000 degrees C) in anion-deficient Ba2RAlO5 (R=Dy, Er, Yb) compounds was reported. The low thermal conductivity was then analyzed by kinetic theory. The highly defective structure of Ba2RAlO5 results in weak atomic bond strength and low sound speeds, and phonon scattering by large concentration of oxygen vacancies reduces the phonon mean free path to the order of interatomic distance. Ba2DyAlO5 exhibits the shortest phonon mean free path and lowest thermal conductivity among the three compositions investigated, which can be attributed to additional phonon scattering by DyO6 octahedron tilting as a result of a low tolerance factor. The Ba2RAlO5 (R=Dy, Er, Yb) compounds have shown great potential in high-temperature thermal insulation applications, particularly as a thermal barrier coating material.  相似文献   

13.
Thermal transport properties are investigated for out-of-plane phonon modes(FPMs) and in-plane phonon modes(IPMs) in double-stub graphene nanoribbons(GNRs). The results show that the quantized thermal conductance plateau of FPMs is narrower and more easily broken by the double-stub structure. In the straight GNRs, the thermal conductance of FPMs is higher in the low temperature region due to there being less cut-off frequency and more low-frequency excited modes. In contrast, the thermal conductance of IPMs is higher in the high temperature region because of the wider phonon energy spectrum. Furthermore, the thermal transport of two types of phonon modes can be modulated by the double-stub GNRs, the thermal conductance of FPMs is less than that of IPMs in the low temperatures, but it dominates the contribution to the total thermal conductance in the high temperatures. The modulated thermal conductance can provide a guideline for designing high-performance thermal or thermoelectric nanodevices based on graphene.  相似文献   

14.
By using scattering matrix method, we investigate the acoustic phonons transport in a quantum waveguide embedded double defects at low temperatures. When acoustic phonons propagate through the waveguide, the total transmission coefficient versus the reduced phonon frequency exhibits a series of resonant peaks and dips, and acoustic waves interfere with each other in the waveguide to form standing wave with particular wavelengths. In the waveguide with void defects, acoustic phonons whose frequencies approach zero can transport without scattering. The acoustic phonons propagating in the waveguide with clamped material defects, the phonons frequencies must be larger than a threshold frequency. It is also found that the thermal conductance versus temperature is qualitatively different for different types of defects. At low temperatures, when the double defects are void, the universal quantum thermal conductance and a thermal conductance plateau can be clearly observed. However, when the double defects consist of clamped material, the quantized thermal conductance disappears but a threshold temperature where mode 0 can be excited emerges. The results can provide some references in controlling thermal conductance artificially and the design of phonon devices.  相似文献   

15.
We have developed a new theoretical formalism for phonon transport in nanostructures using the nonequilibrium phonon Green's function technique and have applied it to thermal conduction in defective carbon nanotubes. The universal quantization of low-temperature thermal conductance in carbon nanotubes can be observed even in the presence of local structural defects such as vacancies and Stone-Wales defects, since the long wavelength acoustic phonons are not scattered by local defects. At room temperature, however, thermal conductance is critically affected by defect scattering since incident phonons are scattered by localized phonons around the defects. We find a remarkable change from quantum to classical features for the thermal transport through defective carbon nanotubes with increasing temperature.  相似文献   

16.
By using scattering matrix method, we investigate the acoustic phonons transport in a quantum waveguide embedded double defects at low temperatures. When acoustic phonons propagate through the waveguide, the total transmission coefficient versus the reduced phonon frequency exhibits a series of resonant peaks and dips, and acoustic waves interfere with each other in the waveguide to form standing wave with particular wavelengths. In the waveguide with void defects, acoustic phonons whose frequencies approach zero can transport without scattering. The acoustic phonons propagating in the waveguide with clamped material defects, the phonons frequencies must be larger than a threshold frequency. It is also found that the thermal conductance versus temperature is qualitatively different for different types of defects. At low temperatures, when the double defects are void, the universal quantum thermal conductance and a thermal conductance plateau can be clearly observed. However, when the double defects consist of clamped material, the quantized thermal conductance disappears but a threshold temperature where mode 0 can be excited emerges. The results can provide some references in controlling thermal conductance artificially and the design of phonon devices.  相似文献   

17.
The phonon dynamics of the Sn/Ge(111) interface is studied using high-resolution helium atom scattering and first-principles calculations. At room temperature we observe a phonon softening at the Kmacr; point in the (sqrt[3]xsqrt[3])R30 degrees phase, associated with the stabilization of a (3x3) phase at low temperature. That phonon band is split into three branches in the (3x3) phase. We analyze the character of these phonons and find out that the low- and room-temperature modes are connected via a chaotic motion of the Sn atoms. The system is shown to present an order-disorder transition.  相似文献   

18.
利用拉曼散射技术对N型4H-SiC单晶材料进行了30~300 K温度范围的光谱测量。实验结果表明,随着温度的升高,N型4H-SiC单晶材料的拉曼峰峰位向低波数方向移动,峰宽逐渐增宽。分析认为,晶格振动随着温度的升高而随之加剧,其振动恢复力会逐渐减小,使振动频率降低;原子相对运动会随温度的升高而加剧,使得原子之间及晶胞之间的相互作用减弱,致使声学模和光学模皆出现红移现象。随着温度的升高,峰宽逐渐增宽。这是由于随着温度的升高声子数逐渐增加,增加的声子进一步增加了散射概率,从而降低了声子的平均寿命,而声子的平均寿命与峰宽成反比,因此随着温度的升高峰宽逐渐增宽。声子模强度随温度升高呈现不同规律,E2(LA),E2(TA),E1(TA)和A1(LA)声子模随着温度升高强度单调增加,而E2(TO),E1(TO)和A1(LO)声子模强度出现了先增后减的明显变化,在138 K强度出现极大值。分析认为造成原因是由于当温度高于138 K时,高能量的声子分裂成多个具有更低能量的声子所致。  相似文献   

19.
The thermal conductance of individual single crystalline silicon nanowires with diameters less than 30 nm has been measured from 20 to 100 K. The observed thermal conductance shows unusual linear temperature dependence at low temperatures, as opposed to the T3 dependence predicted by the conventional phonon transport model. In contrast to previous models, the present study suggests that phonon-boundary scattering is highly frequency dependent, and ranges from nearly ballistic to completely diffusive, which can explain the unexpected linear temperature dependence.  相似文献   

20.
金蔚  惠宁菊  屈世显 《物理学报》2011,60(1):16301-016301
运用微分几何方法及形式散射理论,研究螺旋纳米带中的标量声子输运问题,计算了声子透射系数及热导率.数值结果表明,弯曲导致了声子模式之间的量子干涉,使总透射系数随能量变化的量子化台阶呈现振荡行为,有效地抑制了热导率. 关键词: 螺旋纳米带 声子输运 形式散射理论 微分几何方法  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号