首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》2020,384(30):126760
Quantum discord is a measure based on local projective measurements which captures quantum correlations that may not be fully captured by entanglement. A change in the measurement process, achieved by replacing rank-one projectors with a weak positive operator-valued measure (POVM), allows one to define weak variants of quantum discord. In this work, we experimentally simulate the effect of a weak POVM on a nuclear magnetic resonance quantum information processor. The two-qubit system under investigation is part of a three-qubit system, where one of the qubits is used as an ancillary to implement the phase damping channel. The strength of the weak POVM is controlled by varying the strength of the phase damping channel. We experimentally observed two weak variants of quantum discord namely, super quantum discord and weak quantum discord, in two-qubit Werner and Bell-diagonal states. The resultant dynamics of the states is investigated as a function of the measurement strength.  相似文献   

2.
In this paper, we find that the geometric global quantum discord proposed by Xu and the total quantum correlations proposed by Hassan and Joag are identical. Moreover, we work out the analytical formulas of the geometric global quantum discord and geometric quantum discord both for two-qubit X states, respectively. We further illustrate how to use these formulas to deal with a few particular examples. We also compare the results achieved by using three kinds of geometric quantum discords. The geometric quantum discord is verified as a tight lower bound of the geometric global quantum discord for two-qubit X states.  相似文献   

3.
Experimental approach to characterize the non-locality, entanglement, and quantum correlation of a multiparity quantum system is one of the important subjects in quantum information theory. Here, by investigating the violations of Bell inequality (BI), we analyze the relations among the non-locality, concurrence C, and quantum discord Q typically for a family of Bell-diagonal states. It is shown that, for the optimal measurement basis the BI is always violated, if the quantum discord is larger than 0.5031 and the concurrence is larger than 0.5605. Certainly, the BI is maximally violated for the maximal entanglement and quantum discord, i.e., C=Q=1. Our generic results are demonstrated with a thermal XY model of the two-qubit system with controllable interbit couplings.  相似文献   

4.
We discuss the symmetric quantum discord(SQD) for an arbitrary two-qubit state consisting of subsystems A and B and give the analysis formula of the symmetric quantum discord for the arbitrary two-qubit state. We also give the optimization process of the symmetric quantum discord for some states and obtain the symmetric quantum discord. We compare the quantum discord(QD) with the symmetric quantum discord, and find that the symmetric quantum discord is greater than the quantum discord. We also find that the symmetric quantum discord can be unequal to the quantum discord when the right quantum discord(measure on subsystem B) is equal to the left quantum discord(measure on subsystem A).  相似文献   

5.
运用量子态变换的方法论证了两个qubit纯态中量子关联与纠缠的等价性.并利用三种带有横场的非线性相互作用模型研究了两个qubit体系中的量子关联.发现合适的横场对于最大量子关联态的获得、平均量子关联的提高都有着积极的作用.两个qubit体系获得最大量子关联时,不同模型,不同的横场,对应的量子态却各不相同.  相似文献   

6.
We consider the geometric global quantum discord(GGQD) of two-qubit systems. By analyzing the symmetry of geometric global quantum discord we give an approach for deriving analytical formulae of the extremum problem which lies at the core of computing the GGQD for arbitrary two-qubit states. Furthermore, formulae of GGQD of arbitrary two-qubit states and some concrete examples are presented.  相似文献   

7.

Two-qubit X-state is a large class of quantum states which plays an important role in the quantification and dynamical study of quantum correlations. However, the corresponding quantification of quantum discord is still missing for bona fide discord measures, like original quantum discord, Bures distance of discord, and relative entropy of discord. In this paper, we consider the calculation of Bures distance of discord, which is a kind of correlations satisfying all criteria of a discord measure, for two-qubit X-states. Firstly, we derive explicit expression for Bures distance of discord for a kind of five-parameters family of states. Moreover, for general two-qubit X-states, we not only calculate the Bures distance of discord for a subset of two-qubit X-states by classifying and analyzing the optimal local measurements and the optimal projection operators, but also provide an analytic upper bound for entirety.

  相似文献   

8.
We study the dynamics of quantum discord of two-qubit system in a quantum spin environment at finite temperature in the thermodynamics limit. Special attention is paid to the difference between the entanglement and quantum discord when considering the influences of the environment temperature and the initial system states. We show that in the same range of the physical parameters, when the system states behave no entanglement or entanglement sudden death, the quantum discord keeps nonzero. So the quantum discord is more robust than entanglement under this decoherence environment. Furthermore, we also illustrate that we can tune the parameters related to the system and the environment to suppress the decay of quantum discord.  相似文献   

9.
We investigate the quantum discord dynamics of a two-qubit system coupled to an XY spin-chain environment with energy current. We compared dynamical behaviors of quantum discord under different system-environment couplings, the size of the degrees of freedom of the environment, the anisotropy parameter, and the energy current. The results indicate that the energy current can strongly suppress the quantum discord in the weak-coupling region, while it has no obvious effect on the quantum discord in the strong-coupling regime.  相似文献   

10.
Weak measurements cause small change to quantum states, thereby opening up the possibility of new ways of manipulating and controlling quantum systems. We ask, can weak measurements reveal more quantum correlation in a composite quantum state? We prove that the weak measurement induced quantum discord, called as the “super quantum discord”, is always larger than the quantum discord captured by the strong measurement. Moreover, we prove the monotonicity of the super quantum discord as a function of the measurement strength and in the limit of strong projective measurement the super quantum discord becomes the normal quantum discord. We find that unlike the normal discord, for pure entangled states, the super quantum discord can exceed the quantum entanglement. Our results provide new insights on the nature of quantum correlation and suggest that the notion of quantum correlation is not only observer dependent but also depends on how weakly one perturbs the composite system. We illustrate the key results for pure as well as mixed entangled states.  相似文献   

11.
Pairwise correlation is really an important property for multi-qubit states. For the two-qubit X states extracted from Dicke states and their superposition states, we obtain a compact expression of the quantum discord by numerical check. We then apply the expression to discuss the quantum correlation of the reduced two-qubit states of Dicke states and their superpositions, and the results are compared with those obtained by entanglement of formation, which is a quantum entanglement measure.  相似文献   

12.
By taking into account the intrinsic decoherence and the nonuniform magnetic field, quantum discord (QD) and steady quantum discord (SQD) behavior of a two-qubit anisotropic Heisenberg XYZ chain with different initial states are investigated. We find that properly tuning the external and self parameters not only can improve the quantum correlation and steady quantum correlation but also can weaken the effects of decoherence such as increasing anisotropic parameter Δ, decreasing B or b. When t is infinity, the SQD value and the physical about the SQD phenomenon are studied in detail, the SQD value is strongly dependent on the external and self parameters, which is increased evidently by increasing anisotropic parameter and decreasing nonuniform field. Through analyzing the physical about SQD phenomenon, the conditions about the existence of SQD phenomenon are analyzed with different initial states. These investigations can imply us more control parameters on quantum correlation and steady quantum correlation in solid state systems.  相似文献   

13.
The dynamical behaviors of quantum discord between two atoms coupled with a vacuum cavity are investigated. If the two qubits are initially prepared in two extended Werner-like states, the quantum discord and entanglement can be numerically calculated. There are remarkable differences between the time evolutions of the quantum discord and entanglement under the same conditions. These results imply that quantum discord is not zero for some unentangled states and in some regions entanglement can disappear completely. A large amount of quantum discord exists between the two-qubit. Thus, the quantum discord is more robust than entanglement for the quantum system exposed to the environment. The quantum discord shows sudden change and its existence depends on the initial state of the system. This property of quantum discord may have important implications for experimental characterization of quantum phase transitions.  相似文献   

14.
We discuss some inequalities for N nonnegative numbers. We use these inequalities to obtain known inequalities for probability distributions and new entropic and information inequalities for quantum tomograms of qudit states. The inequalities characterize the degree of quantum correlations in addition to noncontextuality and quantum discord. We use the subadditivity and strong subadditivity conditions for qudit tomographic-probability distributions depending on the unitary-group parameters in order to derive new inequalities for Shannon, Rényi, and Tsallis entropies of spin states.  相似文献   

15.
丁邦福  王小云  赵鹤平 《中国物理 B》2011,20(10):100302-100302
We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method. We explain the relationships among quantum discord, classical correlation, and entanglement, and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state. The new method, which is different from previous approaches, has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state, such as a mixed state.  相似文献   

16.
Taking into account the intrinsic decoherence,we have investigated quantum correlations in a two-qubit Heisenberg XX model when a nonuniform magnetic field is included.We compare entanglement measured by entanglement of formation,quantum discord and measurement-induced measurement(MID)and illustrate their diferent characteristics.Quantum discord and MID show the same features and always exist even though there is no entanglement in the long time limit.In the time evolution,quantum discord could be generated or enhanced to the stable value,while MID just decreases to the stable value.  相似文献   

17.
We study the system-reservoir dynamics of quantum correlations in the decoherence phenomenon within a two-qubit composite system interacting with a common photonic band-gap (PBG) environment. We compare the dynamics of entanglement with that of quantum discord. By analytical and numerical analyses we find that, the quantum discord can maintain a constant value in the long-time limit even when entanglement suddenly disappears. We also show that the detuning conditions play a crucial role in controlling quantum correlations of the two-qubit system. In PBG environment, the stationary quantum discord can be attained in well-controlled conditions. Our results have lots of potential applications to quantum information processing in nanostructured materials.  相似文献   

18.
By taking into account the intrinsic decoherence and the external magnetic field, quantum discord(QD) behaviors in two-qubit spin squeezing model are investigated in detail. It is found that the magnitude of quantum discord is strongly dependent on the initial states, the squeezing interaction μ, the magnetic field Ω and the purity r of initial states. With t, one can obtain the steady quantum discord (SQD) value, the environmental decoherence cannot entirely destroy the quantum correlation. Based on the analysis of the SQD, the conditions about the existence of SQD are obtained with different initial states. Varying the parameters μ, Ω and r not only can weaken the effects of decoherence but also can improve the magnitude of QD and SQD. The effects of the parameters μ and Ω on the QD and SQD display so different and complicated features that one cannot get an uniform law about them, while the values of QD and SQD are improved with increasing r. Properly tuning the parameters μ, Ω and r, one can obtain a larger value of QD or SQD.  相似文献   

19.
Taking into account the intrinsic decoherence, we have investigated quantum correlations in a two-qubit Heisenberg XX model when a nonuniform magnetic field is included. We compare entanglement measured by entanglement of formation, quantum discord and measurement-induced measurement (MID) and illustrate their different characteristics. Quantum discord and MID show the same features and always exist even though there is no entanglement in the long time limit. In the time evolution, quantum discord could be generated or enhanced to the stable value, while MID just decreases to the stable value.  相似文献   

20.
The transverse-field XY model in one dimension is a well-known spin model for which the ground state properties and excitation spectrum are known exactly. The model has an interesting phase diagram describing quantum phase transitions (QPTs) belonging to two different universality classes. These are the transverse-field Ising model and the XX model universality classes with both the models being special cases of the transverse-field XY model. In recent years, quantities related to quantum information theoretic measures like entanglement, quantum discord (QD) and fidelity have been shown to provide signatures of QPTs. Another interesting issue is that of decoherence to which a quantum system is subjected due to its interaction, represented by a quantum channel, with an environment. In this paper, we determine the dynamics of different types of correlations present in a quantum system, namely, the mutual information I(?? AB ), the classical correlations C(?? AB ) and the quantum correlations Q(?? AB ), as measured by the quantum discord, in a two-qubit state. The density matrix of this state is given by the nearest-neighbour reduced density matrix obtained from the ground state of the transverse-field XY model in 1d. We assume Markovian dynamics for the time-evolution due to system-environment interactions. The quantum channels considered include the bit-flip, bit-phase-flip and phase-flip channels. Two different types of dynamics are identified for the channels in one of which the quantum correlations are greater in magnitude than the classical correlations in a finite time interval. The origins of the different types of dynamics are further explained. For the different channels, appropriate quantities associated with the dynamics of the correlations are identified which provide signatures of QPTs. We also report results for further-neighbour two-qubit states and finite temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号