首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 765 毫秒
1.
采用溶胶凝胶法对尖晶石型LiMn2O4正极材料进行铝掺杂氧化锌(AZO)包覆改性,并通过XRD、SEM、EDS、TEM、EIS、ICP-AES和充放电测试等手段对其结构,形貌及电化学性能进行表征。研究结果表明,AZO包覆层有效的阻止了LiMn2O4颗粒和电解液的直接接触,抑制了高温下锰溶解,明显改善了LiMn2O4的高温循环性能。1.5wt%AZO包覆的LiMn2O4正极材料在高温(55℃)1C时,首次放电比容量为114 mAh·g-1,经过100次循环后,容量保持率仍高达95.4%,远高于未包覆LiMn2O4的70.6%。此外,1.5wt%AZO包覆的LiMn2O4表现出了优越的大倍率放电性能,在10C下放电比容量能达到99 mAh·g-1。  相似文献   

2.
以MnSO4为原料,采用溶液结晶法先制备球形MnO2。以所制得的MnO2和LiOH·H2O为原料,采用高温固相法制备了球形LiMn2O4粉体材料。将间苯二酚和甲醛按1:2的摩尔比均匀混合继续搅拌1h,在85℃下干燥后,球磨2h,得到橘红色碳凝胶粉末。以80:20的质量比将所制得的球形LiMn2O4和碳凝胶混合后,在550℃下烧结6h,得到碳包覆的球形LiMn2O4颗粒。从XRD结果可以看出,包覆碳前后的LiMn2O4结晶程度较好,没有杂质峰出现。在2?=18.76,36.28,44.17,58.36,64.14°分别出现对应于(111),(311),(400),(511),(440)晶面的衍射峰,可归属为单一的尖晶石结构。由于裂解碳属于无定型态并且含量较少,因此在XRD图谱中观察不出其衍射峰。但从图中可以看出,碳的存在并不影响尖晶石LiMn2O4的晶体结构。从SEM图像中可以看,球形颗粒的表面有一层致密的碳包覆层。EDX检测得出,锰、氧和碳含量分别为66.68%、26.9%、6.42%。组装的电池采用锂片作为负极,电解液为1mol·L-1 LiFP6/EC DEC(1:1体积比)。恒流充放电测试在3.2~4.4V范围内进行:以0.5C的电流密度,碳包覆球形LiMn2O4电极在25℃和55℃温度下首次放电容量分别为122 mAh·g-1和115 mAh·g-1,而未包覆的电极其对应的首次放电容量分别为119 mAh·g-1和112 mAh·g-1。同时测评两种电池的循环性能,25℃下碳包覆和未包覆电极循环100次后容量分别为111 mAh·g-1,102 mAh·g-1,容量保持率为91%和86%;55℃下,循环50次后容量衰减率分别为0.3%和0.5%。由此可见,碳包覆LiMn2O4材料的放电及循环性能都优于未包覆材料,可归结于以下原因:裂解的无定形碳提高了电极材料的电子电导率,增强了离子在电极表面的传递速度,两种协同作用使得含有少量碳的电极材料可以充放电完全,库仑效率较高,循环过程中减小电极表面的极化;在高温环境下,LiMn2O4电极容量衰减主要是由于电解液中含氟电解质电离出F-所形成的HF对电极具有强的腐蚀性。采用包覆的方法,在球形颗粒表面形成的碳层可以减少活性物质在电解液中的裸露面积从而减少其对电极的侵蚀,提高电池的循环寿命;另外,碳保护层可以使活性物质颗粒保持良好的接触,循环多次后仍能保持较高容量。利用交流阻抗技术及renew软件对所得阻抗谱进行拟合,可以得出包覆与未包覆的两种电极的电荷转移电阻为16.28O和45.02O。由此表明,碳包覆层增强了Li 在电极表面的脱嵌能力,抑制了Jahn-Teller效应以及电化学极化。  相似文献   

3.
负极材料Li_4Ti_5O_(12)的蔗糖改性研究   总被引:1,自引:0,他引:1  
以蔗糖为碳源,采用固相法合成了C改性的Li4Ti5O12材料.XRD衍射分析表明,C的引入没有改变Li4Ti5O12的尖晶石结构,且缓解了颗粒间的团聚,并以初始蔗糖含量为10%(by mass)样品的电化学性能最佳.0.2C放电倍率下首次放电比容量达179.1 mAh/g,在2C和3C倍率下首次放电比容量仍达143.8 mAh/g和129.4 mAh/g.循环伏安和电化学阻抗测试显示改性后的Li4Ti5O12材料电极极化程度较小,并且具有较小的电极反应阻抗.  相似文献   

4.
采用表面掺杂包覆改性的方法对LiMn2O4尖晶石型锂离子电池正极材料进行改性.以Al为表面掺杂元素,Al(NO3)3为原料,研究了Al3+掺杂量为7.1%(原子分数)时不同温度(300、400、500、600、700、750、800℃)下的改性效果.研究发现,随着热处理温度的升高,改性样品的最大比容量先升高后降低,在700℃达到最大值;循环衰减先增大后降低再增大;这是由于随着热处理温度的升高,包覆层逐渐分解并与LiMn2O4颗粒反应固溶,在750℃完全固溶,衰减达到极小值,而后固溶层向颗粒内部扩散,导致包覆层对颗粒免受电解液溶解的保护能力变弱,因而容量衰减增大.其中700℃热处理5h的样品最大比容量为133.6mAh·g-1,循环50周衰减3.4%.研究表明Al3+表面掺杂包覆改性有利于促进LiMn2O4尖晶石型锂离子电池正极材料的商业化生产,具有大规模应用的前景.  相似文献   

5.
通过水热合成的方法制备了不同质量百分比的LiMnPO4包覆LiMn2O4的复合材料,并且利用XRD、拉曼光谱、SEM、TEM以及充放电测试等手段,对其结构和电化学性能进行了表征。研究表明,适当量的LiMnPO4包覆,不仅可以增加材料的可逆比容量,还可以有效提高材料在55℃下的循环特性。1wt%LiMnPO4包覆的LiMn2O4在55℃下的可逆容量为109 mAh.g-1,是其初始容量的96%。此外,1wt%LiMnPO4包覆的LiMn2O4与未包覆的LiMn2O4相比,在倍率特性上也有明显的改善。  相似文献   

6.
采用高温固相反应法制备改性的LiMn2O4锂离子电池正极材料.利用SEM、XRD等方法表征产物的结构特性.结果表明:所得产物均具尖晶石型LiMn2O4结构,该样品经Li2CO3改性后用作锂离子电池正极,于常温和高温下的循环性能均得到明显改善.  相似文献   

7.
正尖晶石LiMn_2O_4电化学性能研究   总被引:6,自引:1,他引:5  
采用高温固相反应合成了尖晶石LiMn2 O4 锂离子电池正极材料 ,并对其性能进行研究 .综合考察了影响材料电化学性能的主要因素 ,诸如原材料的选择、合成温度、Li/Mn比以及添加金属元素Co等 .研究了材料在高温下的电化学性能和影响因素 ,并分析了LiMn2 O4 在电解质中的溶解和引起容量衰减的原因  相似文献   

8.
通过机械活化将快离子导体Li3 V2(PO4)3包覆在LiFePO4 表面, 制备了性能优异的复合正极材料9LiFePO4@Li3 V2(PO4)3. 用XRD, SEM, HRTEM, EDS和电化学测试等手段研究了材料的物理化学性能. 结果表明, 包覆后的材料含有橄榄石结构的LiFePO4、单斜晶系的Li3 V2(PO4)3 和正交晶系的Li3 PO4; LiFePO4颗粒表面包覆了一层Li3 V2(PO4)3, 且部分V3+进入LiFePO4晶格内部, 使其晶格参数减小, 包覆后的LiFePO4的交换电流密度和锂离子扩散系数均提高了1个数量级. 电化学测试结果表明, 包覆后的LiFePO4的倍率性能及循环性能都得到显著改善, 在1C和2C倍率下, 包覆后的LiFePO4的首次放电比容量较包覆前分别提高了34.09%和78.97%, 经150次循环后容量保持率分别提高了27.77%和65.54%; 并且5C时容量为121.379 mA·h/g(包覆前LiFePO4在5C下几乎没有容量), 循环350次后的容量保持率高达94.03%.  相似文献   

9.
LiMn_2O_4的高温比容量衰减研究   总被引:1,自引:0,他引:1  
采用高温固相法合成了LiMn2 O4电极材料 ,运用电化学和阴极膜X射线衍射等方法研究了LiMn2 O4在高温 (≥ 50℃ )下 ,循环时比容量衰减的现象及其衰减机理。结果表明 ,温度越高 ,LiMn2 O4的自放电越严重 ;贮存时间越长 ,LiMn2 O4的可逆容量损失越大 ,平均放电电压越低 ;高温下LiMn2 O4中Mn的溶解是造成比容量衰减的重要原因。通过掺杂微量元素的方法能有效地改善尖晶石LiMn2 O4的高温循环性能  相似文献   

10.
尖晶石LiMn_2O_4的表面改性研究   总被引:10,自引:0,他引:10  
采用溶胶_凝胶法合成尖晶石LiMn2 O4 ,并以LiCoO2 对其进行包覆 ,用XRD、SEM、EPMA等方法对修饰的尖晶石结构和性能进行研究 .结果表明 ,经包覆的LiMn2 O4 在 70 0℃焙烧 10h所得的晶粒是表层富含Co的立方尖晶石 ,而且晶粒中Co3+的含量呈现出从表到里递减的梯度分布 .以该材料作锂离子电池正极 ,虽初始容量稍有降低 ,但能有效地降低Mn2 +在电解质中的溶解 ,而且对Jahn_Teller效应有一定的抑制作用 ,包覆的LiMn2 O4 尖晶石正极材料比未包覆的有更好的循环性能  相似文献   

11.
A series of Sc3+-doped spinel lithium manganese oxides Li1+xScyMn2-yO4(y=0.01, 0.02, 0.06, and 0.10)were synthesized by solid state reaction using LiOH·H2O, MnO2, and Sc2O3 as starting materials. The results of powder X-ray diffraction indicated that the doped Li1+xScyMn2-yO4 maintain the cubic structure of spinel phase Fd3m. The electrochemical properties were characterized by electrochemical methods. The initial discharge capacity reached 135 mAh/g and the capacity fading rate was less than 2% after 40 cycles. The spinel phase was well preserved after 40 cycles. The doping of Sc3+ effectively improved the cycleability of spinels, and was a promising way for the improvement of spinel LiMn2O4 cathode materials.  相似文献   

12.
郑洪河  石磊  高书燕  王键吉 《电化学》2005,11(3):298-303
应用循环伏安、恒电流充放电和电化学阻抗技术研究了尖晶石L iMn2O4于室温离子液体电解液中的电化学性质.实验表明,以室温离子液体作电解液,L iMn2O4的首次放电容量可达108.2 mAh/g、循环效率高于90%,温度和电流密度显著影响电极的电化学性能.交流阻抗测定了L i+在电极/电解液相界面迁移的活化能,为55 kJ/mol.根据界面反应的高活化能解释了L iMn2O4在该离子液体电解液中低温性能和倍率充放电性能不佳的原因.  相似文献   

13.
采用固相燃烧法制备了单晶多面体尖晶石型LiMn1.94B0.06O4正极材料,利用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)以及充放电测试等手段,对其晶体结构和电化学性能等进行了表征。结果表明,B掺杂没有改变尖晶石型LiMn2O4的晶体结构,促进了(440)和(400)晶面的优先生长,形成了高暴露的(111)晶面及少部分(110)和(100)晶面的单晶多面体LiMn1.94B0.06O4晶粒,减少了Mn的溶解和提供了更多的锂离子扩散通道,其晶粒尺寸在160~350 nm之间。在10C、25℃的条件下,LiMn1.94B0.06O4电极的首次放电比容量可达到103.0 mAh·g^-1,2000次循环后,表现出较好的容量保持率(57.7%);在15C高倍率下,LiMn1.94B0.06O4仍然保持了67.1 mAh·g^-1的首次放电比容量,1500次循环后,仍能维持46.2%的容量保持率;在1C、55℃的条件下,其初始放电比容量高达125.2 mAh·g^-1,表现出良好的高温性能。B掺杂能够有效提高尖晶石型LiMn2O4的高倍率性能和循环寿命,稳定晶体结构,抑制Jahn?Teller效应和缓解Mn的溶解。  相似文献   

14.
以FePO4为前驱体, 采用碳热还原法合成了LiFePO4/C复合正极材料; 通过TG-DTA、FTIR、XRD 等技术研究了反应历程, 分析了不同焙烧温度下产物的组成及杂相存在的原因, 并测试了其电化学性能. 研究表明, 300 ℃下LiFePO4已作为主要的相存在, 显示了较低的成相温度; 300、400、500 ℃下样品中存在一定量的杂相Li3PO4和Fe2O3, 600 ℃得到纯相的LiFePO4, 而在700 ℃下出现了焦磷酸盐Li4P2O7, 这些杂相的存在影响了其电化学性能, 600 ℃样品具有最佳的电化学性能, 其在0.1C下首次放电容量达146 mAh·g-1, 循环15 次后容量还保持为141 mAh·g-1.  相似文献   

15.
以商业微米级锰酸锂(LiMn2O4)为正极,钛酸锂(Li4Ti5O12)为负极,分别与商业活性炭(AC)复合,组装成软包装电池电容样品并进行电化学测试。测试结果表明:当样品正负极均复合AC时,其电化学性能要优于只有正极复合AC和未复合AC的样品。其中,正负极活性炭复合比例为5 wt.%,负极与正极的理论容量比(N/P)为1.01时,电池电容样品拥有良好的倍率性能,且其在0.5 C时的放电比容量为56.4 mAh/g,5 C时的容量保持率为0.5 C的72.2%。此外,与未复合AC的样品相比,单体在5 C倍率下经2000次循环后的容量保持率仍有77.5%,远高于前者的30.4%。  相似文献   

16.
Temperature dependence of the physiochemical characteristics of a room-temperature ionic liquid consisting of trimethylhexylammonium (TMHA) cation and bis(trifluoromethane) sulfonylimide (TFSI) anion containing different concentrations of LiTFSI salt was examined. Electrochemical properties of a spinel LiMn(2)O(4) electrode in 1 M LiTFSI/TMHA-TFSI ionic electrolyte were investigated at different temperatures by using cyclic voltammetry, galvanostatic measurements, and electrochemical impedance spectroscopy. The Li/ionic electrolyte/LiMn(2)O(4) cell exhibited satisfactory electrochemical properties with a discharge capacity of 108.2 mA h/g and 91.4% coulombic efficiency in the first cycle under room temperature. At decreased temperature, reversible capacity of the cell could not attain a satisfactory value due to the high internal resistance of the cell and the large activation energy for lithium ion transfer through the electrode/electrolyte interface. Anodic electrolyte oxidation results in the decrease of coulombic efficiency with increasing temperature. Irreversible structural conversion of the spinel LiMn(2)O(4) in the ionic electrolyte, possibly associated with the formation of TMHA intercalated compounds and/or Jahn-Teller distortion, was considered to be responsible for the electrochemical decay with increasing cycles.  相似文献   

17.
何轶  李敏  李荣华 《化学研究》2010,21(1):36-40
采用高温固相反应合成了一系列的LiMn2-2xSmxSrxO4正极材料(0≤x≤0.1);采用X射线衍射仪分析了合成产物的晶体结构;利用充放电试验测定了产物的电化学性能,利用电化学阻抗谱分析了产物的电化学循环机理.结果表明,所合成的LiMn2-2xSmxSrxO4(x=0,0.01,0.02,0.03,0.04,0.05)样品均保持尖晶石相,属于Fd3m空间群.LiMn1.9Sm0.05Sr0.05O4的电化学性能最佳,首次放电容量为96.8 mAh/g,在3.0~4.4 V区间内50次循环后容量保持率超过96%.与此同时,LiMn2O4和LiMn1.90Sm0.05Sr0.05O4的电极阻抗变化不同,进而影响其电化学性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号