首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
SiO2/LaF3:Eu3+核壳结构发光粒子的制备与表征   总被引:1,自引:0,他引:1  
采用简单的液相法合成了SiO2/LaF3:Eu3 核壳结构发光粒子,并对其结构及发光性能进行了表征.XRD分析表明包覆层LaF3:Eu3 为立方晶相结构,红外光谱表明SiO2颗粒表面有柠檬酸的修饰,电镜照片表明合成了球形的核-壳结构的复合粒子,包覆层厚度为10~20 nm,光谱测试表明核-壳复合粒子与纯的LaF3:Eu3 具有相同的发光性能,均以589 nm附近的5D0-7F1磁偶极跃迁为最强发射峰,说明Eu3 在LaF3基质中占据的格位相同.  相似文献   

2.
采用乙二醇法制备了单质Ag纳米粒子,并通过直接沉淀法合成了均匀球形的Ag@YF3∶Eu3+核壳结构复合纳米发光粒子,对产物的结构和性能进行了表征。XRD分析表明:Ag表面包覆上了结晶良好的正交晶系的YF3∶Eu3+。TEM照片表明:所得的纳米复合粒子具有明显的核壳结构和均匀的球形,中间Ag粒子的尺寸在80~100 nm之间,Ag@YF3∶Eu3+的粒径尺寸约为150~180 nm,表面粗糙且包覆完全。电子衍射表明复合样品为多晶。荧光光谱表明:该纳米复合粒子具有良好的发光性,以593 nm附近的5D0→7F1磁偶极跃迁为最强发射峰,但是比纯的YF3∶Eu3+的发光强度要弱,其荧光寿命有所增强,这表明Ag纳米粒子对外层的YF3∶Eu3+的发光有猝灭作用。  相似文献   

3.
采用水热法合成了Fe3O4@SiO2@YF3∶Eu3+磁-光双功能复合粒子,对其结构和性能进行了表征。XRD分析表明:Fe3O4表面包覆上了结晶良好的正交晶系的YF3。TEM照片表明:复合粒子为球形,构成核的Fe3O4颗粒的尺寸在200~350 nm之间,Fe3O4@SiO2@YF3∶Eu3+核壳结构复合粒子的尺寸约为230~380 nm,与包覆前的Fe3O4相比较,包覆后,颗粒尺寸增大,并且YF3∶Eu3+是以棒状结构连接在Fe3O4球型颗粒的表面。磁性和荧光光谱分析表明:该复合颗粒同时具有良好的发光性和磁性,使其在生物医学领域具有潜在的应用。  相似文献   

4.
采用乙二醇法制备了单质Ag纳米粒子,并通过直接沉淀法合成了均匀球形的Ag@YF3:Eu3+核壳结构复合纳米发光粒子,对产物的结构和性能进行了表征.XRD分析表明:Ag表面包覆上了结晶良好的正交晶系的YF3:Eu3+.TEM照片表明:所得的纳米复合粒子具有明显的核壳结构和均匀的球形,中间Ag粒子的尺寸在80~100 nm之间,Ag@YF3:Eu3+的粒径尺寸约为150~180 nm,表面粗糙且包覆完全.电子衍射表明复合样品为多晶.荧光光谱表明:该纳米复合粒子具有良好的发光性,以593 nm附近的5D0→7F1磁偶极跃迁为最强发射峰,但是比纯的YF3∶Eu3+的发光强度要弱,其荧光寿命有所增强,这表明Ag纳米粒子对外层的YF3:Eu3+的发光有猝灭作用.  相似文献   

5.
采用均相沉淀法制备了Ag@SiO2@(Y,RE)(OH)CO3.H2O(RE=Eu,Tb)核壳结构微球,经过700℃焙烧后成功制备出Ag@SiO2@Y2O3:RE3+(RE=Eu,Tb)核壳结构发光材料。XRD谱图表明Ag核具有结晶良好的面心立方结构;SiO2层为无定型;Y2O3层为立方晶系。FTIR谱图表明核壳之间以化学键相结合。TEM照片表明合成了核壳结构的表面光滑的复合微球,分散良好,大小均匀,Ag核的粒径分布为50±20 nm;SiO2层的厚度为20~30 nm;Y2O3:RE3+(RE=Eu,Tb)层厚度约为125 nm。电子衍射图像表明Ag@SiO2@Y2O3:RE3+(RE=Eu,Tb)为多晶结构。UV-Vis光谱表明表面包覆使Ag离子的等离子体共振吸收峰发生了红移。荧光光谱表明Ag@SiO2@Y2O3:Eu3+具有Eu3+的特征红光发射,Ag@SiO2@Y2O3:Tb3+具有Tb3+的特征绿光发射,但是发光强度均比纯的Y2O3:RE3+有所减弱,说明贵金属的引入对稀土Y2O3:RE3+(RE=Eu,Tb)的发光起到了荧光猝灭的作用。  相似文献   

6.
棒状LaF3∶Eu3+纳米晶的制备与发光性能   总被引:1,自引:0,他引:1  
采用一种简单的液相反应法在室温下合成了棒状的LaF3∶Eu3+纳米晶, 对其结构和发光性能进行了表征. XRD分析结果表明, 室温下即可得到结晶良好的六方晶相的LaF3, 灼烧之后样品的衍射峰增强, 没有杂相产生. TEM照片表明, 棒状LaF3∶Eu3+纳米材料的直径为8 nm左右, 长度达到50 nm. 荧光光谱表明, 室温下合成的棒状LaF3∶Eu3+纳米晶的最强发射峰位于589 nm, 对应于Eu3+的5D0-7F1跃迁发射, 说明Eu3+占据LaF3基质中La3+晶格点的C2对称格位上. 同时Eu3+的猝灭摩尔分数为5%, 荧光寿命随着灼烧温度的升高而延长.  相似文献   

7.
采用水热法合成了Fe3O4@SiO2@YF3:Eu3+磁-光双功能复合粒子,对其结构和性能进行了表征.XRD分析表明:Fe3O4表面包覆上了结晶良好的正交晶系的YF3.TEM照片表明:复合粒子为球形,构成核的Fe3O4颗粒的尺寸在200~350 nm之间,Fe3O4@SiO2@YF3:Eu3+核壳结构复合粒子的尺寸约为230~380 nm,与包覆前的Fe3O4相比较,包覆后,颗粒尺寸增大,并且YF3:Eu3+是以棒状结构连接在Fe3O4球型颗粒的表面.磁性和荧光光谱分析表明:该复合颗粒同时具有良好的发光性和磁性,使其在生物医学领域具有潜在的应用.  相似文献   

8.
采用水热法合成了Fe3O4@Gd2O3:Eu3+核壳结构磁光双功能复合粒子,对其结构和性能进行了表征.XRD分析表明:700℃煅烧后Fe3O4表面包覆上了结晶良好的立方晶系的Gd2O3:Eu3+.TEM照片表明:所得的复合粒子具有明显的核壳结构和完美的球形,构成核的Fe3O4颗粒的尺寸在200~300 nm之间,Fe3...  相似文献   

9.
以溶剂热法制备氨基功能化的Fe_3O_4纳米颗粒为磁核,结合溶胶-凝胶法和模板法在其表面先后包覆上致密的SiO_2层和介孔TiO_2层,制备了磁性-发光-微波热转换性-介孔结构为一体的多功能核-壳结构纳米复合颗粒,并对其结构、性能及载药能力进行了研究。XRD分析表明:Fe_3O_4表面包覆上了无定形结构的SiO_2和TiO_2。TEM照片表明:所得的纳米复合颗粒具有明显的核壳结构和完美的球形,构成核的Fe_3O_4颗粒的尺寸在40~50 nm之间,Fe_3O_4@SiO_2@mTiO_2核壳结构纳米复合颗粒的尺寸为60~70 nm,壳层厚度约10 nm,并可观察到壳层中清晰的孔状结构。磁性、荧光光谱和微波热转换特性分析表明:该复合颗粒同时具有良好的发光性、磁性和微波热转换特性。N_2气吸附及药物负载率分析表明,该复合颗粒具有较高的比表面积(640 m~2·g~(-1))和介孔结构(孔径约2.8 nm)并且具有较高的药物负载率。  相似文献   

10.
采用直接沉淀法合成了Fe3 O4@ YF3:Eu3核壳结构磁性-荧光性双功能纳米复合颗粒,对其结构和性能进行了表征.XRD分析表明,得到了结晶良好的尖晶石型Fe3 O4纳米晶和正交相的YF3纳米晶.TEM照片表明,双功能复合颗粒具有明显的核壳结构.构成核的Fe3 O4纳米颗粒尺寸在40 ~80nm之间.Fe3 O4@ YF3:Eu3+核壳结构复合纳米颗粒的尺寸约为100 ~250 nm,壳层YF3:Eu3+厚度介于20 ~30 nm之间.EDS分析表明样品由Y,F,Eu,O和Fe元素组成.荧光光谱和磁性测试结果表明,复合颗粒同时具有良好的发光性和较强的磁性,使其在生物医学领域具有潜在的应用.  相似文献   

11.
采用直接沉淀法成功制备了Ag@SiO2@GdF3:Er,Yb核壳结构纳米上转换发光粒子,并用XRD,TEM,UV-Vis,FTIR以及荧光光谱等对其结构和发光性能进行了表征.XRD分析表明:Ag表面包覆上了结晶良好的正交晶系的GdF3:Er,Yb.TEM照片显示:制备的复合纳米粒子具有明显的球形核壳结构,内核Ag粒子的直径约50 nm左右,包覆后的Ag@SiO2@GdF3:Er,Yb粒径约为80~120 nm,表面光滑且包覆完全.UV-Vis光谱证明:GdF3:Er,Yb和SiO2成功包覆在Ag核表面,包覆后Ag纳米粒子的表面等离子体共振吸收峰发生了红移.荧光光谱表明:在980 nm激光激发下,该复合纳米粒子显示出和纯的GdF3:Er,Yb相同的Er3+的特征红色和绿色上转换发光,以位于655 nm处的Er3+离子的4F9/2→4I15/2的红光发射最强,并且复合粒子的发射光强度比纯的GdF3:Er,Yb有所增强.  相似文献   

12.
采用水热法制备出了均匀有序的球形YVO4∶Eu3+发光材料,并用该法在其表面包覆一层基质材料GdVO4。XRD分析表明包覆前后的样品均为四方晶系锆英石结构的YVO4,且晶体发育良好。FTIR谱图观测到了V-O、Y-O伸缩振动吸收峰。SEM照片表明包覆前后样品均为均匀分散的纳米片组装的有序球形结构。XPS分析进一步证明形成了核壳结构的YVO4∶Eu3+@GdVO4发光材料。荧光光谱表明,YVO4∶Eu3+表面包覆GdVO4之后,发射光强度比未包覆的YVO4:Eu3+有所增强。  相似文献   

13.
采用直接沉淀法制备了WO_3/YF_3∶Eu~(3+)复合纳米材料,并对其结构、组成、形貌和发光性能进行了研究。XRD分析表明:复合纳米材料由纳米粒子WO3和结晶良好的正交晶系的YF3∶Eu~(3+)组成。SEM照片表明:片状WO3颗粒表面沉积了分散性较好、粒径均匀(尺寸为10~50 nm)的YF3∶Eu3纳米颗粒。荧光光谱分析表明:该复合纳米材料具有良好的发光性,以593 nm附近的5D0→7F1磁偶极跃迁为最强发射峰,与纯的YF3∶Eu~(3+)相比WO_3/YF_3∶Eu~(3+)发光强度明显增强,表明具有表面等离子共振效应的WO3纳米粒子对壳层的YF3∶Eu~(3+)起到发光增强作用。  相似文献   

14.
以溶剂热法制备氨基功能化的Fe3O4纳米颗粒为磁核,结合溶胶-凝胶法和模板法在其表面先后包覆上致密的SiO2层和介孔TiO2层,制备了磁性-发光-微波热转换性-介孔结构为一体的多功能核-壳结构纳米复合颗粒,并对其结构、性能及载药能力进行了研究。XRD分析表明:Fe3O4表面包覆上了无定形结构的SiO2和TiO2。TEM照片表明:所得的纳米复合颗粒具有明显的核壳结构和完美的球形,构成核的Fe3O4颗粒的尺寸在40~50 nm之间,Fe3O4@SiO2@mTiO2核壳结构纳米复合颗粒的尺寸为60~70 nm,壳层厚度约10 nm,并可观察到壳层中清晰的孔状结构。磁性、荧光光谱和微波热转换特性分析表明:该复合颗粒同时具有良好的发光性、磁性和微波热转换特性。N2气吸附及药物负载率分析表明,该复合颗粒具有较高的比表面积(640 m2·g-1)和介孔结构(孔径约2.8 nm)并且具有较高的药物负载率。  相似文献   

15.
通过水热法和正硅酸乙酯水解法制备了一种新颖的Gd2O3:Eu@mSiO2核壳双功能(荧光和介孔)纳米棒。用扫描电镜(SEM)、透射电镜(TEM)、X射线粉末衍射(XRD)、红外光谱(FTIR)等多种测试手段对样品的形貌、物相结构进行分析表征。结果表明,该核壳结构纳米材料以Gd2O3:Eu纳米棒(长~400 nm,直径~100 nm)为核,介孔SiO2为壳,尺寸均匀,分散性良好。荧光光谱表明,在紫外光激发下,核壳纳米棒发射强烈的橙红色荧光。同时该核壳纳米棒能成功标记NCI-H460肺癌细胞。以布洛芬(IBU)为药物模型研究核壳纳米棒的药物负载和释放行为,结果表明,Gd2O3:Eu@mSiO2核壳纳米棒对IBU的负载量可达10.25%,而且其具有明显的缓释效果。IBU负载的样品(IBU-Gd2O3:Eu3+@mSiO2)在紫外光照射下仍呈现Eu3+的橙红色发光,且Eu3+在载药系统中的发光强度随IBU释放量的变化而变化,因此通过发光强度的变化可以跟踪和监测药物及其释放情况。  相似文献   

16.
韦伟  张权  郑行望 《化学学报》2013,71(3):387-391
功能型复合纳米材料的设计与合成具有重要的意义.基于反相微乳液法,合成了Chitosan/Fe3O4/SiO2复合纳米粒子,并应用TEM、磁滞回线、SEM能谱、XRD和zeta电位等方法表征了复合纳米粒子.此外,还研究了复合纳米粒子的电化学发光催化特性,研究结果显示:包埋于SiO2壳层中的Fe3O4可基于复合于其中的Chitosan凝胶所提供的纳米通道,而展现出一定的催化过氧化氢氧化鲁米诺的特性.  相似文献   

17.
在表面活性剂辅助的水热条件下合成出尺寸均一的Gd2O3∶Eu3+纳米棒, 对其结构和荧光性质进行了表征, 并对其生长机理进行了初步讨论. XRD结果表明, 水热前驱体样品为六方晶相的Gd(OH)3, 经过灼烧之后样品为立方相的Gd2O3. TEM照片表明, 所得样品为直径60 nm、长度约600 nm的纳米棒. 荧光光谱表明, 在波长为254 nm 的紫外光激发下, Gd2O3∶Eu3+纳米棒产生了不同于前驱体的特征红光发射, 对应于Eu3+ 的5D0-7F2跃迁, 表明Gd2O3是红色发光材料的良好基质.  相似文献   

18.
采用溶胶-凝胶-沉淀法制备ZnO/ZnS/2TiO2:Eu3+荧光粉,并采用X射线衍射(XRD)、红外光谱(IR)、透射电镜(TEM)以及荧光光谱技术对其结构、组成、形貌和发光性能进行表征,探讨其发光机理。结果显示,ZnO/ZnS/2TiO2:Eu3+荧光粉的结构在温度高于600℃时趋于稳定状态,呈不规则结构,由ZnO、TiO2和ZnS构成。IR谱图表明,Ti-O-Ti桥氧键网络结构有利于Eu3+之间的能量传递。荧光光谱分析表明,引入TiO2使Eu3+光谱选律禁阻解除,提高了ZnO/ZnS/2TiO2:Eu3+荧光粉的发光性能,且当nZn(NO3)2:nTiO2=1:2时荧光粉的发光性能最好,612 nm处的5D0→7F2电偶极跃迁为最强发射峰,最佳退火温度为600℃。  相似文献   

19.
结合溶剂热法和沉淀法以氨基功能化的Fe_3O_4纳米颗粒为磁核,在其表面先后包覆上ZnO层和YVO_4:Eu~(3+)发光层,制得集磁性-发光性-微波热转换性能于一体的Fe_3O_4@ZnO@YVO_4:Eu~(3+)多功能复合纳米颗粒,并对其结构和性能进行了研究.X射线衍射(XRD)分析表明,Fe_3O_4表面成功包覆上了六方晶系红锌矿ZnO和四方相YVO_4.透射电子显微镜(TEM)照片表明,所得的复合纳米颗粒具有明显的核壳结构和球形形貌,构成核的Fe_3O_4纳米颗粒的尺寸在30~40 nm,Fe_3O_4@ZnO@YVO_4:Eu~(3+)多功能复合纳米颗粒的尺寸约为50~60 nm,壳层厚度约为10 nm.磁性、荧光光谱和微波热转换特性分析表明,该复合纳米颗粒同时具有良好的发光性、较强磁性和独特的微波热转换特性,在药物传输与可控释放领域具有潜在的应用价值.  相似文献   

20.
采用溶胶-凝胶技术制备了掺Eu3+的以SiO2-B2O3和SiO2-B2O3-Na2O为基质的玻璃态发光材料. 通过激发光谱、发射光谱研究了Eu3+的发光性质, 通过红外光谱、 TEM 、 XRT进一步研究了基质结构变化对发光性能的影响. 结果显示 材料经 600 ℃退火处理后, 结构已十分稳定. 在588 nm和613 nm处显示弱的Eu3+的特征发射光谱, 对应于Eu3+的5D0-7Fj(j=1,2)跃迁. 以SiO2-B2O3为基质的玻璃材料的红外光谱显示形成了Si-O-B键. 该结构对Eu3+的发光有严重的淬灭作用, 使Eu3+的发光强度大大减弱. 以SiO2-B2O3-Na2O为基质的玻璃材料显示Eu3+的发光增强, 红外光谱显示不存在Si-O-B键的振动吸收. 可能是Na取代B的位置, 形成了Si-O-Na键. 此结构对Eu3+的发光有一定增加作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号