首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Gold‐copper alloy nanoparticles (AuCu NPs) were electrodeposited on a graphene – ionic liquid composite film (EGN‐IL). The AuCu NPs showed high electrocatalysis to the oxidation of hydrazine with a catalytic reaction rate constant of about 5.0×104 mol/Ls. In phosphate buffer solutions (pH 6.8) the oxidation current of hydrazine at 0.15 V (vs. SCE) at the resulting electrode (AuCu? EGN‐IL/GCE) was linear to its concentration in the range of 0.2–110 µM with a sensitivity of 56.7 µA/mM, and the detection limit was 0.1 µM (S/N=3). The electrode was successfully applied to the determination of waste water.  相似文献   

2.
Nanoparticles (NPs) consisting of an Fe3O4 core and a thin gold shell (referred to as Au@Fe3O4 NPs) were self-assembled on the surface of a glassy carbon electrode modified with ethylenediamine. Following adsorption of hemoglobin, its interaction with the NPs was studied by UV–Vis spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry. Stable and well-defined redox peaks were observed at about ?350 mV and ?130 mV in pH 6.0 buffer. The modified electrode was used as a mediator-free sensor for hydrogen peroxide (H2O2), with a linear range from 3.4 µM to 4.0 mM of H2O2, and with a 0.67 µM detection limit (at an S/N of 3). The apparent Michaelis-Menten constant is 2.3 mM.  相似文献   

3.
In the present study, we report the simultaneous electrochemical determination of hydroquinone (HQ), catechol (CC) and resorcinol (RC) at gold nanoparticles (Au‐NPs) decorated reduced graphene oxide (RGO) modified electrode. An enhanced and well defined peak current response with a better peak separation of HQ, CC and RC is observed at RGO/Au‐NPs composite than that of RGO and Au‐NPs modified electrodes. The fabricated modified electrode shows a wide linear response in the concentration range of 3–90 µM, 3–300 µM and 15–150 µM for HQ, CC and RC, respectively. The detection limit of HQ, CC and RC is found as 0.15 µM, 0.12 µM and 0.78 µM, respectively.  相似文献   

4.
In the present paper, the electrochemical reduction of nitrite at a hemoglobin modified pencil lead electrode (Hb/PLE) is described. The electrochemical properties of nitrite were studied by cyclic voltammetry and chronoamperometry. Results showed that the hemoglobin film has an excellent electrochemical activity towards the reduction of nitrite. By using voltammetric and chronoamperometric methods, α, nα and n were calculated. Then the ability of the electrode for nitrite determination was investigated using differential pulse voltammetry. The electrocatalytic reduction peak currents were found to be linear with the nitrite concentration in the range from 10 to 220 µM with a detection limit of 5 µM. The relative standard deviation is 2 % for 3 successive determinations of a 100 µM nitrite solution. This modified electrode was successfully used for the detection of low amounts of NO2? in spinach sample and a spiked sample of tap water.  相似文献   

5.
In this paper the electrochemical behavior of hemoglobin (Hb) immobilized on a pencil lead electrode (PLE) was investigated. Immobilization of Hb on the pencil lead electrode was performed by nonelectrochemical and electrochemical methods. In phosphate buffer solution with pH 7.0 Hb showed a pair of well‐defined and nearly reversible redox waves (the anodic and cathodic peak potentials are located at ?0.18 V and ?0.22 V, respectively). The dependence of the anodic peak potential (Epa) on the pH of the buffer solution indicated that the conversion of Hb? Fe(III)/Hb? Fe(II) is a one‐electron‐transfer reaction process coupled with one‐proton‐transfer. In addition the effect of scan rate on peak currents and peak separation potential was investigated and electrochemical parameters such as α and ks were calculated. In the second part of this work, the ability of the electrode for determination of Hb concentration was investigated. The results showed a linear dynamic range from 0.15 to 2 µM and a detection limit of 0.11 µM. The relative standard deviation is 4.1 % for 4 successive determinations of a 1 µM Hb solution.  相似文献   

6.
Co3O4 nanoparticles (NPs) were synthesized and decorated on the multi‐walled carbon nanotubes (MWCNTs) through a simple hydrothermal procedure. The deposited Co3O4 NPs on the sidewalls of MWCNTs were found to be cubic crystal structure and homogenously dispersed with a narrow particle size distribution centered at around 6 nm. The Co3O4/MWCNTs nanocomposite was then utilized for the electrochemical detection of hydrazine, and exhibited a high sensitivity of 34.5 µA mM?1, a low detection limit of 0.8 µM (S/N=3), a wide linear range of 20 µM to 1.1 mM along with a short response time of less than 5 s.  相似文献   

7.
We describe a simple method for preparing Au‐TiO2/graphene (GR) nanocomposite by deposition of Au nanoparticles (NPs) on TiO2/GR substrates. The as‐prepared Au‐TiO2/GR was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The presence of Au NPs on TiO2/GR surface remarkably improves the electrocatalytic activity towards the oxidation of hydrogen peroxide (H2O2) and β‐nicotinamide adenine dinucleotide (NADH). The Au‐TiO2/GR modified glassy carbon (GC) electrode exhibits good amperometric response to H2O2 and NADH, with linear range from 10 to 200 µM and 10 to 240 µM, and detection limit of 0.7 and 0.2 µM, respectively.  相似文献   

8.
A sensitive electrochemical sensor based on in situ modification of graphite electrode via graphene nanosheets (GNs) was developed as a green method for prazosin hydrochloride (PRA) analyses. In this study, GNs were electrochemically synthesized on the surface of graphite electrode via in situ approach and used for the analyses. The proposed sensor showed several advantages such as high sensitivity, low LOD, and excellent repeatability. The oxidation peak current at the optimum analytical conditions using a GNs/graphite electrode at pH 6.0 was linearly dependent on PRA concentration in the range of 0.09–100 µM. A LOD of 0.02 µM and RSD of 3.8 % for 10 µM solution of PRA with a great recovery were obtained.  相似文献   

9.
A new boron doped diamond microcells (BDD) was modified, for rapid, selective and highly sensitive determination of nitrite, using a coating film of polyoxometalates (POMs), formed by cyclic voltammetry on the molecular p‐phenylenediamine (PPD) functionalized BDD. The scanning electron microscopy (SEM) technique was used to examine the morphology of (PPD/SiW11) modified (BDD) electrode. It was found that (SiW11) layer was uniformly formed on the electrode surface. It was observed that (BDD/PPD/SiW11) showed excellent electrocatalytic activities towards nitrite ion. Under the selected conditions, the anodic peak maximum at ?0.6 V was linear versus nitrite concentration in the 40 µM–4 mM range, and the detection limit obtained was 20 µM. The newly developed electrode has been successfully applied to the determination of nitrite content in real river water samples.  相似文献   

10.
This study presents a sensitive voltammetric determination of terbutaline (TER) on a platform based on carbon nanotubes (CNTs) and europium oxide nanoparticles (Eu2O3NPs) coated glassy carbon electrodes (GCEs). An ultrasonic bath was performed for the preparation of composite material. The material was characterized by energy dispersive X‐ray spectroscopy (EDX), X‐ray diffraction method (XRD) and scanning electron microscopy (SEM). The Eu2O3NPs/CNTs/GCE system was assessed for the oxidation of terbutaline (TER). A broad oxidation peak was appeared at 0.71 V using a bare GCE. However, the voltammetry of TER has been improved at a GCE coated with CNTs and a well‐defined anodic peak exhibited at 0.61 V. Furthermore, the nanoparticles of Eu2O3 and CNTs coated GCE has greatly improved the electrochemical behaviour of TER and a sharp peak was appeared at 0.59 V. Cyclic voltammetry at Eu2O3NPs/CNTs/GCE also reveals a high catalytic effect for the oxidation of TER with an oxidation peak that is distinctly enhanced compared to GCE and CNTs/GCE. Eu2O3 nanoparticles were utilized to enhance the surface area of GCE and then improve the sensitivity of the procedure. The response of TER was linear over a concentration range of 2.0×10?8 M ?9.5×10?6 M with an LOD of 3.7×10?9 M. Square wave voltammetric analysis of tablets by Eu2O3NPs/CNTs/GCE yielded a recovery of 99.2 % with an RSD% of 3.2. The modified electrode (EuO2NPs/CNTs/GCE) provides accuracy and precision to the analysis of samples.  相似文献   

11.
In this work a gold electrode modified with self‐assembled layers (SAMs) composed with organic S‐containing compound and gold nanoparticles was prepared. The electrode with SAMs endowed with gold nanoparticles gave the high catalytic effect for ethylene glycol (EG) electrooxidation in solution at pH 7. For this novel sensor a linear relationship between the current response of EG at the potential of peak maximum (jp) and the concentration of this compound in solution (cEG) was found over the range 0.1 µM to 0.7 M with the detection sensitivity jp/cEG equal to about 5 A cm?2 mol?1 dm3 (at v=0.1 V s?1) and the detection limit of 0.046 µM.  相似文献   

12.
The electrochemical response of sodium levo‐thyroxin (T4) at the surface of an edge plane pyrolytic graphite (EPPG) electrode is investigated using cyclic voltammetric technique in the presence of 0.1 M HCl as supporting electrolyte. T4 underwent totally irreversible oxidation at this system and a well‐defined peak at 821 mV was obtained. Compared to the signals obtained in the optimized conditions at bare glassy carbon and carbon paste electrodes, the oxidation current of T4 at an EPPG electrode was greatly enhanced. The electrochemical process of T4 was explored and the experimental conditions were optimized. The oxidation peak current represented a linear dependence on T4 concentration from 0.01 to 10 µM. The detection limit of 3 nM (S/N=3) was obtained for 250 s accumulation at 0.3 V. Determination of T4 in a synthetic serum sample demonstrated that this sensor has good selectivity and high sensitivity.  相似文献   

13.
The electrochemical oxidation of pyrogallol at electrogenerated poly(3,4‐ethylenedioxythiophene) (PEDOT) film‐modified screen‐printed carbon electrodes (SPCE) was investigated. The voltammetric peak for the oxidation of pyrogallol in a pH 7 buffer solution at the modified electrode occurred at 0.13 V, much lower than the bare SPCE and preanodized SPCE. The experimental parameters, including electropolymerization conditions, solution pH values and applied potentials were optimized to improve the voltammetric responses. A linear calibration plot, based on flow‐injection amperometry, was obtained for 1–1000 µM pyrogallol, and a slope of 0.030 µA/µM was obtained. The detection limit (S/N=3) was 0.63 µM.  相似文献   

14.
The aim of this work was to demonstrate that various types of nanostructures provide different gains in terms of sensitivity or detection limit albeit providing the same gain in terms of increased area. Commercial screen printed electrodes (SPEs) were functionalized with 100 µg of bismuth oxide nanoparticles (Bi2O3 NPs), 13.5 µg of gold nanoparticles (Au NPs), and 4.8 µg of multi-wall carbon nanotubes (MWCNTs) to sense hydrogen peroxide (H2O2). The amount of nanomaterials to deposit was calculated using specific surface area (SSA) in order to equalize the additional electroactive surface area. Cyclic voltammetry (CV) experiments revealed oxidation peaks of Bi2O3 NPs, Au NPs, and MWCNTs based electrodes at (790 ± 1) mV, (386 ± 1) mV, and (589 ± 1) mV, respectively, and sensitivities evaluated by chronoamperometry (CA) were (74 ± 12) µA mM?1 cm?2, (129 ± 15) ±A mM?1 cm?2, and (54 ± 2) ±A mM?1 cm?2, respectively. Electrodes functionalized with Au NPs showed better sensing performance and lower redox potential (oxidative peak position) compared with the other two types of nanostructured SPEs. Interestingly, the average size of the tested Au NPs was 4 nm, under the limit of 10 nm where the quantum effects are dominant. The limit of detection (LOD) was (11.1 ± 2.8) ±M, (8.0 ± 2.4) ±M, and (3.4 ± 0.1) ±M for Bi2O3 NPs, Au NPs, and for MWCNTs based electrodes, respectively.  相似文献   

15.
A glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNTs) and a hydrophobic ionic liquid (IL), was used for the simultaneous voltammetric determination of theophylline (TP) and guaifenesin (GF). The results showed that the oxidations of TP and GF were facilitated at modified electrode and peak‐to‐peak separation at MWCNT? IL/GCE (252 mV) was larger than that observed at unmodified GCE (165 mV). Voltammetric signals for TP and GF exhibited linear ranges of 0.5 to 98.0 µM (R2>0.99) and 1.5 to 480.0 µM (R2>0.99), respectively. The method was used to estimate TP and GF contents in some real samples.  相似文献   

16.
ZnO nanoparticles (ZnO NPs) prepared by microwave heating technique are used to modify a gold electrode (ZnO/Au) for the hydrazine detection study. The synthesized product is well characterized by various techniques. Detailed electrochemical investigation of the oxidation of hydrazine on the ZnO/Au electrode in 0.02 M phosphate buffer solution (PBS) of pH 7.4 was carried out. A very low detection limit of 66 nM (S/N=4) and a wide linearity in current for a concentration range from 66.0×10?3 to 415 µM was achieved by amperometry. The electrode was found to be stable for over a month when preserved in PBS.  相似文献   

17.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

18.
An ethanol biosensor based on alcohol dehydrogenase (ADH) attached to Au seeds decorated on magnetic nanoparticles (Fe3O4@Au NPs) is presented. ADH was immobilized on Fe3O4@Au NPs, which were subsequently fixed by a magnet on a carbon paste electrode modified with 5 % (m : m) MnO2. Optimum conditions for the amperometric determination of ethanol with the biosensor were as follows: working potential +0.1 V (vs. Ag/AgCl); supporting electrolyte: 0.1 M phosphate buffer solution at pH 6.8 containing 0.25 mM of the coenzyme (NAD+); working electrode: carbon paste with magnetically attached Fe3O4@Au NPs (0.012 mg ? cm?2 electrode area) with immobilized alcohol dehydrogenase (120 units per cm2 of electrode area). Linearity between signal and concentration was found for the range from 0.1 to 2.0 M ethanol (r2=0.995) with a detection limit of 0.07 M, a sensitivity of 0.02 µA ? mM?1 ? cm?2, a reproducibility of 4.0 % RSD, and a repeatability of 2.7 % RSD. The results for the determination of ethanol in alcoholic beverages showed good agreement with gas chromatography (GC) with recovery of 96.0 – 108.8 %.  相似文献   

19.
Procedures for the preparation and characterisation of ensembles of gold nanodisk electrodes (NEE) of 30 nm diameter are presented, in particular focusing on improvements in the signal/background current ratios and detection limits with respect to the electrochemical oxidation of iodide and its analytical determination in water samples. At NEEs iodide undergoes a quasi-reversible diffusion controlled oxidation with a slight shift in E 1/2 values and slightly higher peak to peak separation with respect to conventional gold disk electrodes. The double layer charging current at the NEE is significantly lower than at conventional electrodes so that the detection limit (DL) by cyclic voltammetry with NEEs in tap water is significantly lower than DL at the Au-disk millimetre-sized electrode (DL 0.3 µM at NEE vs. 4 µM for Au-disk). Finally, it is shown that NEEs in combination with square wave voltammetry can be applied for the direct determination of iodide in water samples from the lagoon of Venice, with a detection limit of 0.10 µM.  相似文献   

20.
A strategy to fabricate a hydrogen peroxide (HP) sensor is developed by electrodepositing silver nanoparticles (Ag NPs) on a modified glassy carbon electrode (GCE) with a zinc oxide (ZnO) film. The Ag NPs/ZnO/GCE has been characterized by scanning electron microscopy, cyclic voltammetry, and chronoamperometry. It has been found that the Ag NPs synthesized in the presence of ZnO film provide an electrode with enhanced sensitivity and excellent stability. The sensitivity to HP is enhanced 3-fold by using Ag NPs/ZnO/GCE compared to Ag NPs/GCE. The HP sensor exhibits good linear behavior in the concentration range 2 µM to 5.5 mM for the quantitative analysis of HP with a detection limit of 0.42 µM (S/N?=?3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号