首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Most of the current analytical methods depend largely on laboratory-based analytical techniques that require expensive and bullky equipment,potentially incur costly testing,and involve lengthy detection processes.With increasing requirements for point-of-care testing(POCT),more attention has been paid to miniaturized analytical devices.Miniaturized electrochemical(MEC)sensors,including different material-based MEC sensors(such as DNA-,paper-,and screen electrode-based),have been in strong demand in analytical science due to their easy operation,portability,high sensitivity,as well as their short analysis time.They have been applied for the detection of trace amounts of target through measuring changes in electrochemical signal,such as current,voltage,potential,or impedance,due to the oxidation/reduction of chemical/biological molecules with the help of electrodes and electrochemical units.MEC sensors present great potential for the detection of targets including small organic molecules,metal ions,and biomolecules.In recent years,MEC sensors have been broadly applied to POCT in various fields,including health care,food safety,and environmental monitoring,owing to the excellent advantages of electrochemical(EC)technologies.This review summarized the state-of-the-art advancements on various types of MEC sensors and their applications in POCT.Furthermore,the future perspectives,opportunities,and challenges in this field are also discussed.  相似文献   

2.
Feng Pan 《结构化学》2020,39(1):7-10
Machine learning is an emerging method to discover new materials with specific characteristics.An unsupervised machine learning research is highlighted to discover new potential lithium ionic conductors by screening and clustering lithium compounds,providing inspirations for the development of solid-state electrolytes and practical batteries.  相似文献   

3.
Designing defect-engineered semiconductor heterojunctions can effectively promote the charge carrier separation.Herein,novel ceria(CeO2) quantum dots(QDs) decorated sulfur-doped carbon nitride nanotubes(SCN NTs) were synthesized via a thermal polycondensation coupled in situ depositionprecipitation method without use of template or surfactant.The structure and morphology studies indicate that ultrafine CeO2 QDs are well distributed inside and outside of SCN NTs offering highly dispersed active sites and a large contact interface between two components.This leads to the promoted formation of rich Ce3+ ion and oxygen vacancies as confirmed by XPS.The photocatalytic performance can be facilely modulated by the content of CeO2 QDs introduced in SCN matrix while bare CeO2 does not show activity of hydrogen production.The optimal catalyst with 10% of CeO2 loading yields a hydrogen evolution rate of 2923.8 μmol h-1 g-1 under visible light,remarkably higher than that of bare SCN and their physical mixtures.Further studies reveal that the abundant surface defects and the created 0 D/1 D junctions play a critical role in improving the separation and transfer of charge carriers,leading to superior solar hydrogen production and good stability.  相似文献   

4.
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm-2 delivers a stable area capacity of 6.6 mAh cm-2 over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm-2 over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.  相似文献   

5.
Transition metal selenides have been widely studied as anode materials of sodium ion batteries(SIBs),however,the investigation of solid-electrolyte-interface(SEI)on these materials,which is critical to the electrochemical performance of SIBs,remains at its infancy.Here in this paper,ZnSe@C nanoparticles were prepared from ZIF-8 and the SEI layers on these electrodes with and without reduced graphene oxide(rGO)layers were examined in details by X-ray photoelectron spectroscopies at varied charged/discharged states.It is observed that fast and complicated electrolyte decomposition reactions on ZnSe@C leads to quite thick SEI film and intercalation of solvated sodium ions through such thick SEI film results in slow ion diffusion kinetics and unstable electrode structure.However,the presence of rGO could efficiently suppress the decomposition of electrolyte,thus thin and stable SEI film was formed.ZnSe@C electrodes wrapped by rGO demonstrates enhanced interfacial charge transfer kinetics and high electrochemical performance,a capacity retention of 96.4%,after 1000 cycles at 5 A/g.This study might offer a simple avenue for the designing high performance anode materials through manipulation of SEI film.  相似文献   

6.
CXN天然沸石的研究2: 吸附性质   总被引:3,自引:0,他引:3  
李军  邱瑾  龙英才 《化学学报》2000,58(8):988-991
采用N~2,NH~3,CO~2,乙烯,丙烯,水,甲醇,乙醇,丙醇等作为吸附剂,研究了由我国CXN天然沸石改性制得的H-STI和Na-STI沸石的吸附性质,H-STI和Na-STI沸石的BET表面积及微孔孔体积约为420m^2/g和0.20m^3/g。根据NH~3和CO~2在H-STI沸石上的吸附等温线计算得到它们的吸附热分别为44.8和26.5kJ/mol。乙烯,丙烯,甲醇,乙醇,丙醇等在Na-STI沸石上的吸附等温线表明该沸石对有机分子的吸附具有链长选择性。在低分压下水相对于甲醇的吸附量表明沸石具有一定的疏水性质。  相似文献   

7.
常温常湿条件下Au/MeO~x催化剂上CO氧化性能   总被引:12,自引:0,他引:12  
王桂英  张文祥  蒋大振  吴通好 《化学学报》2000,58(12):1557-1562
利用共沉淀法制备了Au/MeO~x催化剂(Me=Al,Co,Cr,Cu,Fe,Mn,Ni,Zn)。在常温常湿条件下,考察了不同氧化物负载的金基催化剂的CO氧化性能。结果表明,氧化物种类对催化剂的活性和稳定性均有较大的影响。Cu,Mn,Cr等氧化物负载的金基催化剂的活性较差,而Zn,Fe,Co,Ni,Al等金属氧化物负载的金基催化剂可将CO完全氧化,又具有一定的稳定性,在相同反应条件下,CO完全转化时的稳定性顺序为Au/ZnO>Au/α-Fe~2O~3>Au/Co~3O~4>Au/γ-Al~2O~3≈Au/NiO。还发现水对Au/MnO~x催化剂的活性和稳定性有负作用,而对180℃焙烧制备的Au/ZnO-180催化剂的活性和稳定性均有明显的湿度增强作用。  相似文献   

8.
Cost-effective atomically dispersed Fe-N-P-C complex catalysts are promising to catalyze the oxygen reduction reaction(ORR)and replace Pt catalysts in fuel cells and metal-air batteries.However,it remains a challenge to increase the number of atomically dispersed active sites on these catalysts.Here we report a highly efficient impregnation-pyrolysis method to prepare effective ORR electrocatalysts with large amount of atomically dispersed Fe active sites from biomass.Two types of active catalyst centers were identified,namely atomically dispersed Fe sites and FexP particles.The ORR rate of the atomically dispersed Fe sites is three orders of magnitude higher than it of FexP particles.A linear correlation between the amount of the atomically dispersed Fe and the ORR activity was obtained,revealing the major contribution of the atomically dispersed Fe to the ORR activity.The number of atomically dispersed Fe increases as the Fe loading increased and reaching the maximum at 1.86 wt%Fe,resulting in the maximum ORR rate.Optimized Fe-N-P-C complex catalyst was used as the cathode catalyst in a homemade Zn-air battery and good performance of an energy density of 771 Wh kgZn-1,a power density of 92.9 m W cm-2 at 137 m A cm-2 and an excellent durability were exhibited.  相似文献   

9.
Lithium-sulfur(Li-S)battery is regarded as one of the most promising next-generation energy storage systems due to the ultra-high theoretical energy density of 2600 Wh kg-1.To address the insulation nature of sulfur,nanocarbon composition is essential to afford acceptable cycling capacity but inevitably sacrifices the actual energy density under working conditions.Therefore,rational structural design of the carbon/sulfur composite cathode is of great significance to realize satisfactory electrochemical performances with limited carbon content.Herein,the cathode carbon distribution is rationally regulated to construct high-sulfur-content and high-performance Li-S batteries.Concretely,a double-layer carbon(DLC)cathode is prepared by fabricating a surface carbon layer on the carbon/sulfur composite.The surface carbon layer not only provides more electrochemically active surfaces,but also blocks the polysulfide shuttle.Consequently,the DLC configuration with an increased sulfur content by nearly 10 wt%renders an initial areal capacity of 3.40 mAh cm-2 and capacity retention of 83.8%during 50 cycles,which is about two times than that of the low-sulfur-content cathode.The strategy of carbon distribution regulation affords an effective pathway to construct advanced high-sulfur-content cathodes for practical high-energy-density Li-S batteries.  相似文献   

10.
Carbon dioxide and methane are two main greenhouse gases which are contributed to serious global warming.Fortunately,dry reforming of methane(DRM),a very important reaction developed decades ago,can convert these two major greenhouse gases into value-added syngas or hydrogen.The main problem retarding its industrialization is the seriously coking formation upon the nickel-based catalysts.Herein,a series of confined indium-nickel(In-Ni)intermetallic alloy nanocatalysts(InxNi@SiO2)have been prepared and displayed superior coking resistance for DRM reaction.The sample containing 0.5 wt.%of In loading(In0.5Ni@SiO2)shows the best balance of carbon deposition resistance and DRM reactivity even after 430 h long term stability test.The boosted carbon resistance can be ascribed to the confinement of core–shell structure and to the transfer of electrons from Indium to Nickel in In-Ni intermetallic alloys due to the smaller electronegativity of In.Both the silica shell and the increase of electron cloud density on metallic Ni can weaken the ability of Ni to activate C–H bond and decrease the deep cracking process of methane.The reaction over the confined InNi intermetallic alloy nanocatalyst was conformed to the Langmuir-Hinshelwood(L-H)mechanism revealed by in situ diffuse reflectance infrared Fourier transform spectroscopy(in-situ DRIFTS).This work provides a guidance to design high performance coking resistance catalysts for methane dry reforming to efficiently utilize these two main greenhouse gases.  相似文献   

11.
Ion exchange adsorption is an important physicochemical process at solid/liquid interfaces. In this study, an approach was established to estimate the activation energy of cation exchange reaction on the charged surface, considering Hofmeister effects. The experimental results showed that Hofmeister effects strongly affect the ionic adsorption equilibrium on the charged particle surface. The position of the adsorbed counterion in the diffuse layer was predicted according to the established model, and the ion exchange activation energies for different bivalent cations were estimated via the cation exchange experiments. The activation energy decreases with increasing ion concentration, and the adsorption saturation of cations is a function of the activation energy at different concentrations. The established model of cation exchange adsorption in the present study has universal applicability in solid/liquid interface reactions.  相似文献   

12.
李睿  李航 《物理化学学报》2010,26(3):552-560
通过恒流法研究了不同表面电场作用下Mg2+、Ca2+吸附动力学. 结果发现: (1)实验初期阶段是强静电力作用下的零级动力学过程和一定反应时间后的弱静电力作用下的一级动力学过程, 且零级速率过程和一级速率过程之间存在明显的转折点; (2)不同电解质构成中Ca2+的吸附速率明显快于Mg2+的, 平衡吸附量也大于Mg2+的, 且Ca2+在土壤颗粒表面的覆盖度比Mg2+在土壤颗粒表面的覆盖度高; (3)离子的相对有效电荷系数与土壤颗粒表面电场作用的不同是各体系中Ca2+、Mg2+吸附动力学有差别的根本原因; (4)根据离子吸附的理论模型可以分别计算出速率系数、平衡吸附量、离子在土壤颗粒表面的覆盖度以及固定液的体积, 这些参数可以定量评估土壤颗粒表面电场对离子吸附动力学的影响.  相似文献   

13.
Thermal diffusion of a dilute solution of charged silica colloidal particles (Ludox) is studied by a holographic grating technique. The Soret coefficient of the charged colloids is measured as a function of the Debye screening length and the surface charge density of the colloids. The latter is varied by means of variation of the pH. The experimental Soret coefficients are compared with several theoretical predictions. The surface charge density is independently obtained from electrophoresis measurements, the size of the colloidal particles is obtained from electron microscopy, and the Debye length is calculated from ion concentrations. The only adjustable parameter in the comparison with theory is therefore the intercept at zero Debye length, which measures the contribution to the Soret coefficient of the solvation layer and possibly the colloid core material.  相似文献   

14.
铀和铀同位素的离子交换过程研究   总被引:1,自引:0,他引:1  
吴玉锁  邱陵  杨坤山 《化学学报》1987,45(8):794-797
在浓缩铀同位索的阳离子交换法中,UC_2~(2+)在离子交换树脂中的传质问题具有特别重要的意义.但迄今未见有详细的报道.本文对阳离子交换树脂—HCl溶液体系中的UO_2~(2+)—H~+正、逆交换,特别对~(235)UO_2~(2+)—~(238)UO_2~(2+)交换动力学及机制作了研究和探讨.  相似文献   

15.
A hydrophilic, positively charged, durable coating has been developed for capillary electrophoresis of macromolecules. Polyethyleneimine is adsorbed to the inner wall of fused silica capillaries and the adsorbed coating cross-linked into a stable layer. Capillaries of polyethyleneimine-coated silica gave unique separations owing to the reversal of electro-osmotic flow caused by the positively charged coating. The resulting coating was stable from pH 2-12 and could be used over a wide pH range without substantial change in electro-osmotic flow. High-molecular-weight polymers were needed to give thick coatings which mask silanol groups on the wall. Proteins were resolved quickly and efficiently with good recovery using capillaries of 50 cm in length.  相似文献   

16.
The rates of dissolution of calcitic Carrara marble have been reported to be significantly reduced in alkaline pH (pH 8.25) at 25 degrees C in the presence of (1-hydroxyethylidene)-1,1 diphosphonic acid (HEDP). The adsorption takes place at the calcite/water interface at the double layer through the interaction of charged surface species with the charged solution species of the adsorbate. The present work focused on obtaining a better understanding of the interaction of the calcite surface with HEDP. Calculations were performed according to the triple layer model, assuming the formation of surface complexes between the charged surface species of calcite and the species of HEDP dominant at pH 8.25. According to the model, the adsorbed species are located at the inner Helmholtz plane of the electrical double layer. Strong lateral interactions between the adsorbed species were suggested and were corroborated from the calculation of the respective energy, which was equal to 69 kJ mol(-1). The adsorption isotherm was consistent with the proposed model at low surface coverage values, while discrepancies between the values experimentally measured and the predicted were found at higher adsorbate concentrations. The deviations from the predicted values were attributed to the fact that HEDP adsorption on calcite resulted in the formation of multiple layers. The model explained adequately the changes in the zeta-potential values of calcite in the presence of HEDP in the solution which resulted in charge reversal upon adsorption.  相似文献   

17.
Single and multicomponent batch adsorption kinetics were obtained for deamidated mAb variants on two commercial cation exchangers, one with an open macroporous structure--UNOsphere S--and the other with charged dextran grafts--Capto S. The adsorption kinetics for the macroporous matrix was found to be controlled largely by pore diffusion. The effective diffusivity estimated from single component data was a fraction of the mAb free solution diffusivity, and its value could be used to accurately predict the adsorption kinetics for two- and three-component systems. In this case, when two or more variants were adsorbed simultaneously, both experimental and predicted results showed a temporary overshoot of the amount adsorbed above the equilibrium value for the more deamidated variant followed by a gradual approach to equilibrium. Adsorption rates on the dextran grafted material were much faster than those observed for the macroporous matrix for both single component and simultaneous adsorption cases. In this case, no significant overshoot was observed for the more deamidated forms. The Capto S adsorption kinetics could be described well by a diffusion model with an adsorbed phase driving force for single component adsorption and for the simultaneous adsorption of multiple variants. However, this model failed to predict the adsorption kinetics when more deamidated forms pre-adsorbed on the resin were displaced by less deamidated ones. In this case, the kinetics of the displacement process was much slower indicating that the pre-adsorbed components severely hindered transport of the more strongly bound variants. Overall, the results indicate that despite the lower capacity, the macroporous resin may be more efficient in process applications where displacement of one variant by another takes place as a result of the faster and more predictable kinetics.  相似文献   

18.
离子交换树脂吸附镉的动力学研究   总被引:27,自引:3,他引:27  
实验采用离子交换法吸附氯盐体系中的镉,用动态法对2017型强碱性阴离子交换树脂的工作条件进行了优化,在最佳反应体系下,用批式离子交换法研究了温度、溶液浓度和树脂粒径对交换过程的影响,并用动边界模型描述交换过程的动力学,确定了离子交换行为的速度控制步骤为颗粒扩散,并推算出了交换过程的表观活化能、反应级数、速率常数和动力学总方程式。  相似文献   

19.
This work investigates the effects of ionic strength and protein characteristics on adsorption and transport of lysozyme, BSA, and IgG in agarose-based cation exchangers with short ligand chemistry and with charged dextran grafts. In all cases, the adsorption equilibrium capacity decreased with increasing salt. However, the adsorption kinetics was strongly influenced by the adsorbent structure and protein characteristics. For the smaller and positively charged lysozyme, the effective pore diffusivity was only weakly dependent on salt for the dextran-free media, but declined sharply with salt for the dextran-grafted materials. For this protein, the dextran grafts enhanced the adsorption kinetics at low salt, but the enhancement vanished at higher salt concentrations. For BSA, which was near its isoelectric point for the experimental conditions studied, the effective diffusivity was low for all materials and almost independent of salt. Finally, for the larger and positively charged IgG, the effective diffusivity varied with salt, reaching an apparent maximum at intermediate concentrations for both dextran-free and dextran-grafted media with the kinetics substantially enhanced by the dextran grafts for these conditions. Microscopic observations of the particles during protein adsorption at low ionic strengths showed transient patterns characterized by sharp adsorption fronts for all materials. A theory taking into account surface or adsorbed phase diffusion with electrostatic coupling of diffusion fluxes is introduced to explain the mechanism for the enhanced adsorption kinetics observed for the positively charged proteins.  相似文献   

20.
Sedimentation and electrophoresis of porous colloid complex; a colloidal floc and a colloidal particle covered with adsorbed polyelectrolytes are visited to examine the characteristic length of the transport phenomena. In the sedimentation, the overall size of a floc is dominative in the determination of Stokes drag, while the permeability is determined by the largest pore in the floc. This picture is important when break-up of flocs in a turbulent flow is considered. When a colloidal particles is coated with polyelectrolytes, the characteristic length for diffusion is that of the diameter of colloidal particle plus protruding part of polymer chain adsorbed onto the particle. On the other hand, when the porous colloid complex is placed in the electric field, fluid surrounding the complex can easily penetrate into the complex by means of electro-osmosis. The diffusive part of electric double layer located inside of the complex is the source of strong driving force of this osmotic flow. Flow generated in this regime can be treated as a sort of shear driven. The characteristic length scale for transport phenomena is the Debye length or the distance between charged segments. These lengths are much shorter than the case of sedimentation and Brownian diffusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号