首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We present a phenomenological theory for the homogeneous phases of nematic liquid crystals constituted by biaxial molecules. We propose a general polynomial potential in two macroscopic order parameter tensors that reproduces the mean-field phase diagram confirmed by Monte Carlo simulations [De Matteis et al. in Phys Rev E 72:041706 (2005)] and recently recognized to be universal [Bisi et al. in Phys Rev E 73:051709 (2006)] for dispersion force molecular pair-potentials enjoying the D 2h symmetry. The requirement that the phenomenological theory comply uniquely with this phase diagram reduces considerably the admissible phenomenological coefficients, both in their number and in the ranges where they can vary.   相似文献   

2.
The linear stability of wall-injected pressure- driven Couette-like flow in power-law fluids is studied. Previous study on this kind of flow for Newtonian fluids by Nicoud and Angilella [Phys. Rev. E 56, 3000 (1997)] was extended to power-law fluids to understand the effects of shear-thinning/thickening nature on the flow stability. A related expression between the critical crossflow Reynolds number for Newtonian fluids and that for power-law fluids is obtained as the streamwise Reynolds number is large enough based on numerical computations, and verified theoretically in the case of a limiting condition with the power-law index.  相似文献   

3.
This paper proposes a modified dynamic minimization algorithm for parameter estimation of chaotic systems, based on a scalar time series. Comparing with the previous design proposed by Maybhate and Amritkar (Phys. Rev. E 59:284?C293, 1999), two important new design concepts related to the feedback control and the auxiliary functions for parametric updating laws are introduced. Two different types of estimates can then be derived, and numerical simulations confirm their superior performances to the designs based on the original dynamic minimization algorithm or other existing approaches. Furthermore, a circuit experiment is carried out to demonstrate the robustness and practicability of the proposed design.  相似文献   

4.
An interacting capillary bundle model is developed for analysing immiscible displacement processes in porous media. In this model, pressure equilibration among the capillaries is stipulated and capillary forces are included. This feature makes the model entirely different from the traditional tube bundle models in which fluids in different capillaries are independent of each other. In this work, displacements of a non-wetting phase by a wetting phase at different injection rates were analysed using the interacting capillary bundle model. The predicted evolutions of saturation profiles were consistent with both numerical simulation and experimental results for porous media reported in literature which cannot be re-produced with the non-interacting tube bundle models.  相似文献   

5.
In this paper, we consider a coupled Mackey–Glass electronic circuits model with two delays, which has been proposed by Sano et al. (Phys. Rev. E 75:016207, 2007). At first, we investigate the stability and occurrence of Hopf bifurcation by analyzing the distribution of the roots of associated characteristic equation. Then an explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived, by using the normal form theory and center manifold argument. Finally, some numerical simulations are carried out for supporting the analytic results.  相似文献   

6.
A smoothed particle hydrodynamics approach is utilized to model a non-Newtonian fluid with a spatially varying viscosity. In the limit of constant viscosity, this approach recovers an earlier model for Newtonian fluids of Español and Revenga (Phys Rev E 67:026705, 2003). Results are compared with numerical solutions of the general Navier–Strokes equation using the “regularized” Bingham model of Papanastasiou (J Rheol 31:385–404, 1987) that has a shear-rate-dependent viscosity. As an application of this model, the effect of having a non-Newtonian fluid matrix, with a shear-rate-dependent viscosity in a moderately dense suspension, is examined. Simulation results are then compared with experiments on mono-size silica spheres in a shear-thinning fluid and for sand in a calcium carbonate paste. Excellent agreement is found between simulation and experiment. These results indicate that measurements of the shear viscosity of simple shear-rate-dependent non-Newtonian fluids may be used in simulation to predict the viscosity of concentrated suspensions having the same matrix fluid.  相似文献   

7.
8.
Based on the Biot theory of porous media,the exact solutions to onedimensional transient response of incompressible saturated single-layer porous media under four types of boundary conditions are developed.In the procedure,a relation between the solid displacement u and the relative displacement w is derived,and the well-posed initial conditions and boundary conditions are proposed.The derivation of the solution for one type of boundary condition is then illustrated in detail.The exact solutions for the other three types of boundary conditions are given directly.The propagation of the compressional wave is investigated through numerical examples.It is verified that only one type of compressional wave exists in the incompressible saturated porous media.  相似文献   

9.
This article presents the lattice Boltzmann simulation of viscous fingering phenomenon in immiscible displacement of two fluids in porous media. Such phenomenon generally takes place when a less viscous fluid is used to displace a more viscous fluid, and it can be found in many industrial fields. Dimensionless quantities, such as capillary number, Bond number and viscosity ratio between displaced fluid and displacing fluid are introduced to illustrate the effects of capillary force, viscous force, and gravity on the fluid behaviour. The surface wettability, which has an impact on the finger pattern, is also considered in the simulation. The numerical procedure is validated against the experiment about viscous fingering in a Hele-Shaw cell. The displacement efficiency is investigated using the parameter, areal sweep efficiency. The present simulation shows an additional evidence to demonstrate that the lattice Boltzmann method is a useful method for simulating some multiphase flow problems in porous media.  相似文献   

10.
The mixture theory is employed to the analysis of surface-wave propagation in a porous medium saturated by two compressible and viscous fluids (liquid and gas). A linear isothermal dynamic model is implemented which takes into account the interaction between the pore fluids and the solid phase of the porous material through viscous dissipation. In such unsaturated cases, the dispersion equations of Rayleigh and Love waves are derived respectively. Two situations for the Love waves are discussed in detail: (a) an elastic layer lying over an unsaturated porous half-space and (b) an unsaturated porous layer lying over an elastic half-space. The wave analysis indicates that, to the three compressional waves discovered in the unsaturated porous medium, there also correspond three Rayleigh wave modes (R1, R2, and R3 waves) propagating along its free surface. The numerical results demonstrate a significant dependence of wave velocities and attenuation coefficients of the Rayleigh and Love waves on the saturation degree, excitation frequency and intrinsic permeability. The cut-off frequency of the high order mode of Love waves is also found to be dependent on the saturation degree.  相似文献   

11.
基于多孔介质混合物理论,用解析的方法研究了不可压饱和土地基受到简谐荷载作用下的动力响应问题。利用Fourier积分变换求解耦合方程组,得到了二维饱和土介质在简谐荷载作用下的通解。针对表面透水的具有下卧基岩的饱和土层以及半无限饱和土地基的边界条件,获得了固体骨架位移、孔隙流体位移、固体骨架有效应力以及孔隙流体压力的积分形式解答,并通过数值算例分析了饱和土地基在简谐荷载作用下的响应。  相似文献   

12.
A dynamic continuum theory is presented for smectic A liquid crystals in which the usual director n and unit layer normal a do not always necessarily coincide. Most previous dynamic continuum theories equate n with a; the theory developed in this article allows n and a to differ in non-equilibrium situations, work that has been motivated by the recent investigations by Auernhammer et al. (Rheol. Acta 39, 215–222, 2000; Phys. Rev. E 66, 061707, 2002) and Soddemann et al. (Eur. Phys. J. E 13, 141–151, 2004). The usual Oseen constraint () for smectics is not imposed upon the unit normal a. Permeation is also included. After a summary of the complete dynamic equations, an application is given via an example which shows that planar aligned layers of smectic A subjected to an arbitrary periodic disturbance are linearly stable.   相似文献   

13.
Wang  Le  Liu  Yongzhong  Chu  Khim 《Transport in Porous Media》2012,93(3):721-735

For two-phase flows of immiscible displacement processes in porous media, we proposed a simplified model to capture the interfacial fronts, which is given by explicit expressions and satisfies the continuity conditions of pressure and normal velocity across the interface. A new similarity solution for the interfacial evolution in the rectangular coordinate system was derived by postulating a first-order approximation of the velocity distribution in the region that the two-phase fluids co-exist. The interfacial evolution equation can be explicitly expressed as a linear function, where the slope of the interfacial equation is simply related to the mobility ratio of two-phase fluids in porous media. The application of the proposed solutions to predictions of interfacial evolutions in carbon dioxide injected into saline aquifers was illustrated under different mobility ratios and operational parameters. For the purpose of comparison, the numerical solutions obtained by level set method and the similarity solutions based on the Dupuit assumptions were presented. The results show that the proposed solution can give a better approximation of interfacial evolution than the currently available similarity solutions, especially in the situation that the mobility ratio is large. The proposed approximate solutions can provide physical insight into the interfacial phenomenon and be readily used for rapidly screening carbon dioxide storage capacity in subsurface formations and monitoring the migration of carbon dioxide plume.

  相似文献   

14.
This paper deals with the numerical verification of the theory developed by Derzho and Grimshaw (DG) (1997, Phys. Fluids 9(11), 3378–3385) regarding solitary waves in stratified fluids with recirculation regions. The Boussinesq approximation is made and the stratification is chosen such that the Brunt-Väisälä frequency differs only slightly from uniform stratification. To establish the consistency of the numerical scheme the usual KdV and mKdV solutions are tested first and then the solutions obtained by DG are considered. It is found that these waves remain of permanent form and are stationary when viewed at their corresponding phase speed. The recirculation region remains stagnant to first order as predicted by DG.  相似文献   

15.
半空间饱和土内置点载荷作用下的热弹性波动   总被引:1,自引:0,他引:1  
郑荣跃  刘干斌  梧松 《力学学报》2008,40(3):413-420
基于Biot波动理论及热弹性动力理论,利用已建立的饱和多孔弹性介质热流固耦合控制方程,研究半无限地基在内置点热力源作用下的动力响应问题. 求解过程引用Hankel变换技术,得到了热力源作用下土体中温度增量、应力、位移和孔隙水压力的积分形式解答.利用Hankel数值逆变换得到计算结果,分析了热流固耦合条件下激振频率对竖向位移和孔隙水压力响应的影响. 对热流固耦合、热弹性和多孔弹性模型计算结果进行了比较.   相似文献   

16.
The flow of viscoelastic fluids through a porous channel with one impermeable wall is computed. The flow is characterized by a boundary value problem in which the order of the differential equation exceeds the number of boundary conditions. Three solutions are developed: (i) an exact numerical solution, (ii) a perturbation solution for small R, the cross-flow Reynold's number and (iii) an asymptotic solution for large R. The results from exact numerical integration reveal that the solutions for a non-Newtonian fluid are possible only up to a critical value of the viscoelastic fluid parameter, which decreases with an increase in R. It is further demonstrated that the perturbation solution gives acceptable results only if the viscoelastic fluid parameter is also small. Two more related problems are considered: fluid dynamics of a long porous slider, and injection of fluid through one side of a long vertical porous channel. For both the problems, exact numerical and other solutions are derived and appropriate conclusions drawn.  相似文献   

17.
The results of numerical simulation of the processes of two-phase flow through a porous medium in three-dimensional digital models of the porous space of three natural sandstone samples are given. The calculations are carried out using the lattice Boltzmann equations and the digital field gradient model over a wide range of the capillary numbers and the viscosity ratios of injected and displaced fluids. The conditions of flow through a porous medium with capillary fingering, viscous fingering and with stable displacement front are revealed.  相似文献   

18.
In this work, the field equations of the linear theory of thermoelasticity have been constructed in the context of a new consideration of Fourier law of heat conduction with time-fractional order and three-phase lag. A uniqueness and reciprocity theorems are proved. One-dimensional application for a half-space of elastic material in the presence of heat sources has been solved using Laplace transform and state space techniques Ezzat (Canad J Phys Rev 86:1241–1250, 2008). According to the numerical results and its graphs, conclusion about the new theory has been established.  相似文献   

19.
This paper presents an analytical Buckley-Leverett-type solution for one-dimensibnal immiscible displacement of a Newtonian fluid by a non-Newtonian fluid in porous media. The non-Newtonian fluid viscosity is assumed to be a function of the flow potential gradient and the non-Newtonian phase saturation. To apply this method to field problems a practical procedure has been developed which is based on the analytical solution and is similar to the graphic technique of Welge. Our solution can be regarded as an extension of the Buckley-Leverett method to Non-Newtonian fluids. The analytical result reveals how the saturation profile and the displacement efficiency are controlled not only by the relative permeabilities, as in the Buckley-Leverett solution, but also by the inherent complexities of the non-Newtonian fluid. Two examples of the application of the solution are given. One application is the verification of a numerical model, which has been developed for simulation of flow of immiscible non-Newtonian and Newtonian fluids in porous media. Excellent agreement between the numerical and analytical results has been obtained using a power-law non-Newtonian fluid. Another application is to examine the effects of non-Newtonian behavior on immiscible displacement of a Newtonian fluid by a power-law non-Newtonian fluid.  相似文献   

20.
Continuum equations for a two-phase fluid-particle flow are developed and applied to the problem of steady, laminar flow over an infinite porous flat plate. Both phases are assumed to behave as non-Newtonian power-law fluids. The effects of particle-particle interaction and diffusion of particles are taken into account in the mathematical model. In addition, the particle phase is assumed to have a non-uniform density distribution. The resulting governing equations are nondimensionalized and solved numerically subject to appropriate boundary conditions using an iterative, implicit finite-difference method. Graphical results for the displacement thicknesses and the skin-friction coefficients for both the fluid and particle phases are presented and discussed to elucidate interesting features of the solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号