首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Particle Image Velocimetry (PIV) measurements have been analyzed in order to characterize the dynamics of coherent structures (eddies and streaks) within the suction side boundary layer of a low pressure turbine cascade perturbed by impinging wakes. To this end, the instantaneous flow fields at low Reynolds number and elevated free-stream turbulence intensity level (simulating the real condition of the blade row within the engine) were investigated in two orthogonal planes (a blade-to-blade and a wall-parallel plane). Proper Orthogonal Decomposition (POD) has been employed to filter the instantaneous flow maps allowing a better visualization of the structures involved in the transition process of the boundary layer. For the unsteady case properly selected POD modes have been also used to sort the instantaneous PIV images in the wake passage period. This procedure allows computing phase-averaged data and visualizing structures size and intensity in the different parts of the boundary layer during the different wake passage phases. The contributions to the whole shear stress due to the largest spanwise oriented scales at the leading and trailing boundaries of the wake-jet structures and those associated with streaky structures observed in the bulk of the wake are discussed. Instantaneous images in the wall-parallel plane are filtered with POD and they allow us to further highlight the occurrence of low and high speed traveling streaks (Klebanoff mode). The periodic advection along the suction side of the high turbulent content regions carried by the wakes anticipates both formation and sinuous instability of the streaks inside the boundary layer as compared with the steady case. The dynamics driving the breakdown of the streaks and the consequent formation of nuclei with high wall-normal vorticity have been found to be almost the same in the steady and the unsteady cases. Auto-correlation of the instantaneous images are also presented in order to highlight analogies and differences in the size and spacing of streaks in the two cases. These results are also compared with the available literature concerning simplified geometries (i.e flat plate) operating under steady inflow.  相似文献   

2.
Measurements were made in the stern boundary layers and near wakes of an elliptic cylinder and a slender ship model. Turbulence intensities, Reynolds stresses, kinematic eddy viscosities and mixing lengths are presented. For the elliptic cylinder, furthermore, auto-correlation and power spectrum are obtained. It is shown that the separation from the cylinder increases the turbulence intensities, and the Kármán vortices enhance the turbulence power at the vortex frequency. All distributions of Reynolds stresses in the thick boundary layer and wake of the ship model show a secondary low peak at about half the thickness.  相似文献   

3.
杨晓雷 《力学学报》2021,53(12):3169-3178
为实现碳达峰、碳中和“3060”目标, 风能将在我国能源体系发挥重要作用. 风力机尾迹是影响风电性能和度电成本的关键因素, 需在风力机布置和控制设计中充分考虑. 本文首先介绍风力机尾迹的数值模拟方法, 包括解析模型、低阶模型、大涡模拟和来流湍流生成方法. 解析模型和低阶模型可快速计算风力机尾迹, 但依赖于模型参数, 且不能或不能准确预测尾迹湍流特性. 结合风力机参数化模型的大涡模拟可准确预测尾迹蜿蜒等湍流特征, 是流动机理研究的有力工具, 可为发展快速预测模型提供数据和理论支撑. 接着, 本文介绍了叶尖涡、中心涡和尾迹蜿蜒并讨论其产生机理. 对于湍流来流, 叶尖涡主要存在于近尾迹. 蜿蜒是远尾迹的主要特征, 影响下游风力机的来流特征. 尾迹蜿蜒的产生有两种机制: 来流大尺度涡和剪切层失稳. 数值和观测结果显示两种机制共同存在. 机舱和中心涡对尾迹蜿蜒有重要影响. 采用叶片和机舱的致动面模型可准确预测尾迹蜿蜒. 研究显示不同风力机尾迹间的湍流特征存在相似性, 为发展尾迹湍流的快速预测模型提供了理论依据. 当前研究多关注平坦地形上的风力机尾迹, 复杂地形和海洋环境下的大气湍流和风力机尾迹的机理复杂, 现有工程模型无法准确预测, 有待深入研究.   相似文献   

4.
Wind turbines operate in the surface layer of the atmospheric boundary layer, where they are subjected to strong wind shear and relatively high turbulence levels. These incoming boundary layer flow characteristics are expected to affect the structure of wind turbine wakes. The near-wake region is characterized by a complex coupled vortex system (including helicoidal tip vortices), unsteadiness and strong turbulence heterogeneity. Limited information about the spatial distribution of turbulence in the near wake, the vortex behavior and their influence on the downwind development of the far wake hinders our capability to predict wind turbine power production and fatigue loads in wind farms. This calls for a better understanding of the spatial distribution of the 3D flow and coherent turbulence structures in the near wake. Systematic wind-tunnel experiments were designed and carried out to characterize the structure of the near-wake flow downwind of a model wind turbine placed in a neutral boundary layer flow. A horizontal-axis, three-blade wind turbine model, with a rotor diameter of 13 cm and the hub height at 10.5 cm, occupied the lowest one-third of the boundary layer. High-resolution particle image velocimetry (PIV) was used to measure velocities in multiple vertical stream-wise planes (xz) and vertical span-wise planes (yz). In particular, we identified localized regions of strong vorticity and swirling strength, which are the signature of helicoidal tip vortices. These vortices are most pronounced at the top-tip level and persist up to a distance of two to three rotor diameters downwind. The measurements also reveal strong flow rotation and a highly non-axisymmetric distribution of the mean flow and turbulence structure in the near wake. The results provide new insight into the physical mechanisms that govern the development of the near wake of a wind turbine immersed in a neutral boundary layer. They also serve as important data for the development and validation of numerical models.  相似文献   

5.
In turbomachines, secondary flows (or endwall flows) typically originate at the junction between endwalls and the blade surface. Within the blade passage, the strength of the secondary flows is amplified by the crossflow from the pressure to the suction surface of the blade. The enhanced mixing due to secondary flows induce additional losses into the system. This decreases the overall work output and also changes the flow incidence onto the downstream blade rows. Using a series of high-fidelity eddy resolving simulations, the current study attempts to provide an improved understanding for the complex flow physics over the endwalls of a high-lift Low Pressure Turbine (LPT) blade. The effect of three different inflow conditions has been studied. These include a laminar boundary layer (LBL), a turbulent boundary layer (TBL) and wakes with secondary flow (W&S) from an upstream blade row. For the simulations with TBL and W&S, precursor eddy resolving simulations were used to prescribe realistic inflows. The loss generation mechanisms were subsequently studied both at the endwall and the midspan, which includes evaluating the mass-averaged total pressure loss coefficient (Yp) and the loss generation rate.When compared to LBL, additional disturbances from an incoming TBL and wakes with secondary flows enhanced the mixing within the blade passage resulting in a substantial increase in the total pressure loss. Prior to flow transition, incoming wakes with secondary flows increased the local loss generation rate at both the endwall and the midspan in the front portion of the blade passage (x/Cx < 0.84). In contrast, in the aft portion of the passage (x/Cx > 0.8), the incoming wakes effectively suppressed the separation bubble at the midspan thereby decreasing the local loss generation rate. It is also demonstrated that the wakes shed from the trailing edge at the mid-span mix out rapidly when compared to the passage vortex at the endwall.  相似文献   

6.
Unsteady surface pressure and heat transfer have been measured on a blade of a linear turbine cascade exposed to unsteady oncoming wakes generated by moving cylinders on a squirrel cage device. The Reynolds number and the Strouhal number corresponded to the values in a real turbomachine. The periodic components of pressure and heat transfer showed clear response to the unsteady wakes. However, the distribution along the blade surface of both pressure and heat transfer coefficient changed very little from phase to phase. The heat transfer results have shown that the boundary layer on the pressure side remained laminar for all cases, but that the boundary layers on the suction side became transitional under the wake disturbance. With increasing wake-passing frequency, the start of the transition moved forward. Increasing the wake-passing frequency resulted in a significant increase in heat transfer along the whole blade surface including the portions where the boundary layers were nominally laminar.  相似文献   

7.
8.
This paper reports velocity measurements obtained on a smooth and two geometrically different types of rough surfaces in an open channel. The measurements were obtained using a laser-Doppler anemometer. The recent boundary layer theory proposed by George and Castillo (1997) and conventional scaling laws are used to analyze the data. The present flow shows a strong structural similarity to a canonical turbulent boundary layer in the inner layer. The results demonstrate that surface roughness increases the wake parameter. Surface roughness also enhances the levels of turbulence intensities, Reynolds shear stress and triple correlations over most of the boundary layer, but decreases the stress anisotropy.  相似文献   

9.
This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.  相似文献   

10.
Detailed measurements of two-dimensional profiles of static pressure, mean velocity, turbulence intensity and Reynolds shear stress were carried out with conventional pressure probes and hot wire probes at preselected streamwise stations in the boundary layer and wake of a 12.5% thick, 600 mm chord two-dimensional symmetric aerofoil mounted at zero incidence in a low speed wind tunnel. The chord Reynolds number was one million and the wake measurements extended up to three chord lengths (or nearly 660 trailing edge momentum thicknesses) downstream of the trailing edge. The data indicate rapid interaction of the wall layers immediately behind the trailing edge, leading to significant changes in the flow parameters close to the trailing edge. The relaxation of the wake is preceded by initial ‘overshoot’ in the streamwise profiles of mean-flow parameters and peak values of turbulence components. Further growth of the wake towards similarity/equilibrium is discussed.  相似文献   

11.
An experimental study was conducted to characterize the dynamic wind loads and evolution of the unsteady vortex and turbulent flow structures in the near wake of a horizontal axis wind turbine model placed in an atmospheric boundary layer wind tunnel. In addition to measuring dynamic wind loads (i.e., aerodynamic forces and bending moments) acting on the wind turbine model by using a high-sensitive force-moment sensor unit, a high-resolution digital particle image velocimetry (PIV) system was used to achieve flow field measurements to quantify the characteristics of the turbulent vortex flow in the near wake of the wind turbine model. Besides conducting “free-run” PIV measurements to determine the ensemble-averaged statistics of the flow quantities such as mean velocity, Reynolds stress, and turbulence kinetic energy (TKE) distributions in the wake flow, “phase-locked” PIV measurements were also performed to elucidate further details about evolution of the unsteady vortex structures in the wake flow in relation to the position of the rotating turbine blades. The effects of the tip-speed-ratio of the wind turbine model on the dynamic wind loads and wake flow characteristics were quantified in the terms of the variations of the aerodynamic thrust and bending moment coefficients of the wind turbine model, the evolution of the helical tip vortices and the unsteady vortices shedding from the blade roots and turbine nacelle, the deceleration of the incoming airflows after passing the rotation disk of the turbine blades, the TKE and Reynolds stress distributions in the near wake of the wind turbine model. The detailed flow field measurements were correlated with the dynamic wind load measurements to elucidate underlying physics in order to gain further insight into the characteristics of the dynamic wind loads and turbulent vortex flows in the wakes of wind turbines for the optimal design of the wind turbines operating in atmospheric boundary layer winds.  相似文献   

12.
Experiments were performed in a wind tunnel to study the flow around an axisymmetric body driven by a marine propeller. Measurements were made in the boundary layer and wake of the bare body, on the body with only a dummy hub rotating, and finally, with the propeller in operation. Part 1 of this paper described the experimental arrangement and instrumentation. Also, circumferentially-averaged results were presented to clarify certain aspects of the overall flow. In the present part, measurements made with a triplesensor hotwire are analyzed using phase-averaging techniques to reconstruct the instantaneous velocity and Reynolds-stress fields downstream of the propeller and show the evolution of the wakes of individual blades, blade-tip vortices, and the complex flow associated with vortices generated at hub-blade junctions. It is found that the blade wakes and features of the tip and hub flow are evident up to about two propeller diameters, beyond which the wake of the body-propeller combination can be regarded as a rotationally-symmetric flow.  相似文献   

13.
14.
Some of the problems associated with applying currently available viscous flow calculation schemes to turbulent flow in gas-turbine blading and passages are reviewed. These flows pose severe difficulties in both numerics and turbulence modelling, although the main emphasis here is on the latter aspect. Since complex strain fields and strong body forces are an intrinsic part of flow in turbomachinery, it is preferable that the turbulence modelling of these flows be based on an approximation of the Reynolds stress transport equations themselves. Some current views on closure approximations for these equations are discussed. Applications considered include the effects of free stream turbulence and streamline curvature, the mixing of blade wakes, and the three-dimensional flows that arise in a 90° bend and in the corner boundary layer near a blade root  相似文献   

15.
 The results from an experimental investigation of unsteady boundary layer behavior on a linear turbine cascade are presented in this paper. To perform a detailed study on unsteady cascade aerodynamics and heat transfer, a new large-scale, high-subsonic research facility for simulating the periodic unsteady flow has been developed. It is capable of sequentially generating up to four different unsteady inlet flow conditions that lead to four different passing frequencies, wake structures, and freestream turbulence intensities. For a given Reynolds number, two different unsteady wake formations are utilized. Detailed unsteady boundary layer velocity. turbulence intensity, and pressure measurements are performed along the suction and pressure surfaces of one blade. The results display the transition and development of the boundary layer, ensemble-averaged velocity, and turbulence intensity. Received: 23 September 1996/Accepted: 19 February 1997  相似文献   

16.
Short cylindrical struts are commonly employed to carry services across the annular flow passages of gas turbines and to provide mechanical support. Velocity variations along the span of the strut will be large and secondary flow becomes important. For bluff bodies, boundary layer separation tends to be fixed close to the maximum thickness of the strut, or any sharp edges, so that secondary flow effects have only a minor influence on wake formation. In the case of more streamlined shapes, the effect of Reynolds number and freestream turbulence level on boundary layer growth are much more significant. Moreover, the secondary flows generated by the interaction between the strut cross-section and the end-wall boundary layers may influence the position of separation, thus changing the distributions of pressure on the strut surface and in the wake. These modifications lead to large variations in the total drag force experienced by the strut. A recent wind tunnel investigation is described in which wake pressure measurements have been used to determine the additional losses produced by the secondary flow generation. Experiments have been performed on isolated struts for both circular and streamlined cross-section over a range of Reynolds number, aspect ratio and thickness-to-chord ratio. A principal finding is that the results for the streamlined struts may be reduced to a correlation which embraces the effects of cross-sectional geometry as well as the end-wall boundary layer thickness, the Reynolds and the Mach numbers.  相似文献   

17.
Shallow wakes that occur in a wide range of natural flows tend to generate instabilities that develop into large, 2D coherent structures (2DCS). We present the results of an experimental study to stabilize shallow wakes by local, enhanced bottom roughness. Two successful stabilization strategies are compared to a base case of an unsteady bubble wake. First, localized bed roughness is placed in the lateral shear layers near the shoulders of the cylinder. Second, a local roughness element is placed at the end of the recirculation bubble, in the downstream region where large-scale vortices would normally shed. Dye visualization is used to assess the qualitative behavior of the wake, and two-component laser Doppler velocimetry (LDV) measurements are made to measure the Reynolds stress distributions and time-averaged velocity profiles. In both stabilization cases, a minimum patch size of the enhanced roughness elements is required for stabilization, which depends on the momentum thickness of the shear layers and the locations of enhanced Reynolds shear stresses. The main effect of the wake stabilization is a reduction in momentum exchange with the ambient flow due to damping of the large 2DCS. This reduction in eddy diffusivity results in a narrower wake and a slower decay of the centerline velocity deficit with downstream distance compared to the base case of an unsteady bubble wake.  相似文献   

18.
A numerical study of the unsteady phenomena resulting of periodic passing wakes is presented. An unsteady passing wake boundary condition is implemented in a three-dimensional Navier–Stokes code. Unsteady computations are performed to evaluate the capability of the code to simulate the rotor–stator interaction flow. The analysis of the flow structures shows the vortical disturbances and the migration of the incoming wakes through the blade passage. This physical analysis allows to separate the main origins of the losses.  相似文献   

19.
A detailed experimental study is performed on the separated flow structures around a low aspect-ratio circular cylinder (pin-fin) in a practical configuration of liquid cooling channel. Distinctive features of the present arrangement are the confinement of the cylinder at both ends, water flow at low Reynolds numbers (Re = 800, 1800, 2800), very high core flow turbulence and undeveloped boundary layers at the position of the obstacle. The horseshoe vortex system at the junctions between the cylinder and the confining walls and the near wake region behind the obstacle are deeply investigated by means of Particle Image Velocimetry (PIV). Upstream of the cylinder, the horseshoe vortex system turns out to be perturbed by vorticity bursts from the incoming boundary layers, leading to aperiodical vortex oscillations at Re = 800 or to break-away and secondary vorticity eruptions at the higher Reynolds numbers. The flow structures in the near wake show a complex three-dimensional behaviour associated with a peculiar mechanism of spanwise mass transport. High levels of free-stream turbulence trigger an early instabilization of the shear layers and strong Bloor–Gerrard vortices are observed even at Re = 800. Coalescence of these vortices and intense spanwise flow inhibit the alternate primary vortex shedding for time periods whose length and frequency increase as the Reynolds number is reduced. The inhibition of alternate vortex shedding for long time periods is finally related to the very large wake characteristic lengths and to the low velocity fluctuations observed especially at the lowest Reynolds number.  相似文献   

20.
 Hot-wire measurements are performed in boundary-layer flows developing on a NACA 0012 airfoil over which wakes pass periodically. The periodic wakes are generated by rotating circular cylinders clockwise or counterclockwise around the airfoil. The time- and phase-averaged mean streamwise velocities and turbulence fluctuations are measured to investigate the phenomena of wake-induced transition. Especially, the phase-averaged wall shear stresses are evaluated using a computational Preston tube method. The passing wakes significantly change the pressure distribution on the airfoil, which has influence on the transition process of the boundary layer. The orientation of the passing wake alters the pressure distribution in a different manner. Due to the passing wake, the turbulent patches are generated inside the laminar boundary layer on the airfoil, and the boundary layer becomes temporarily transitional. The patches propagate downstream at a speed smaller than the free-stream velocity and merge together further downstream. Relatively high values of phase-averaged turbulence fluctuations in the outer part of the boundary layer indicate the possibility that breakdown occurs in the outer layer away from the wall. It is confirmed that the phase-averaged mean velocity profile has two dips in the outer region of the transitional boundary layer for each passing cycle. Received: 12 February 2001 / Accepted: 6 July 2001 Published online: 23 November 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号