首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
We consider a reaction‐diffusion equation with a traveling heat source on an unbounded domain. The numerical simulation of the problem is difficult because of the moving singularity, the blow‐up phenomenon, and the delta function in the equation. Because we are only interested in the solution behavior near the heat source, we choose a bounded moving domain which contains the heat source and has the same speed as the source. Local absorbing boundary conditions are constructed on the boundaries of the moving domain. Then, we transform the moving domain to a fixed one. At last, a special moving collocation method is adopted. The new method is much simpler than the existing moving finite difference methods. Moreover, numerical experiments illustrate the accuracy and efficiency of our moving collocation method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

2.
In this article, a kind of meshless local radial point interpolation (MLRPI) method is proposed to two‐dimensional fractional‐time convection‐diffusion‐reaction equations and satisfactory agreements are archived. This method is based on meshless methods and benefits from collocation ideas but it does not belong to the traditional global meshless collocation methods. In MLRPI method, it does not need any kind of integration locally or globally over small quadrature domains which is essential in the finite element method and those meshless methods based on Galerkin weak form. Also, it is not needed to determine shape parameter which plays important role in collocation method based on the radial basis functions (Kansa's method). Therefore, computational costs of this kind of MLRPI method is less expensive. The stability and convergence of this meshless approach are discussed and theoretically proven. It is proved that the present meshless formulation is very effective for modeling and simulation of fractional differential equations. Furthermore, the numerical studies on sensitivity analysis and convergence analysis show the stability and reliable rates of convergence. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 974–994, 2017  相似文献   

3.
Finite Volume Methods for Multi-Symplectic PDES   总被引:2,自引:0,他引:2  
We investigate the application of a cell-vertex finite volume discretization to multi-symplectic PDEs. The investigated discretization reduces to the Preissman box scheme when used on a rectangular grid. Concerning arbitrary quadrilateral grids, we show that only methods with parallelogram-like finite volume cells lead to a multi-symplectic discretization; i.e., to a method that preserves a discrete conservation law of symplecticity. One of the advantages of finite volume methods is that they can be easily adjusted to variable meshes. But, although the implementation of moving mesh finite volume methods for multi-symplectic PDEs is rather straightforward, the restriction to parallelogram-like cells implies that only meshes moving with a constant speed are multi-symplectic. To overcome this restriction, we suggest the implementation of reversible moving mesh methods based on a semi-Lagrangian approach. Numerical experiments are presented for a one dimensional dispersive shallow-water system.  相似文献   

4.
This work presents a radial basis collocation method combined with the quasi‐Newton iteration method for solving semilinear elliptic partial differential equations. The main result in this study is that there exists an exponential convergence rate in the radial basis collocation discretization and a superlinear convergence rate in the quasi‐Newton iteration of the nonlinear partial differential equations. In this work, the numerical error associated with the employed quadrature rule is considered. It is shown that the errors in Sobolev norms for linear elliptic partial differential equations using radial basis collocation method are bounded by the truncation error of the RBF. The combined errors due to radial basis approximation, quadrature rules, and quasi‐Newton and Newton iterations are also presented. This result can be extended to finite element or finite difference method combined with any iteration methods discussed in this work. The numerical example demonstrates a good agreement between numerical results and analytical predictions. The numerical results also show that although the convergence rate of order 1.62 of the quasi‐Newton iteration scheme is slightly slower than rate of order 2 in the Newton iteration scheme, the former is more stable and less sensitive to the initial guess. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

5.
This paper is concerned with the numerical solutions of Bratu‐type and Lane‐Emden–type boundary value problems, which describe various physical phenomena in applied science and technology. We present an optimal collocation method based on quartic B‐spine basis functions to solve such problems. This method is constructed by perturbing the original problem and on a uniform mesh. The method has been tested by four nonlinear examples. In order to show the advantage of the new method, numerical results are compared with those obtained by some of the existing methods, such as normal quartic B‐spline collocation method and the finite difference method (FDM). It has been observed that the order of convergence of the proposed method is six, which is two orders of magnitude larger than the normal quartic B‐spline collocation method. Moreover, our method gives highly accurate results than the FDM.  相似文献   

6.
In this article, we apply compact finite difference approximations of orders two and four for discretizing spatial derivatives of wave equation and collocation method for the time component. The resulting method is unconditionally stable and solves the wave equation with high accuracy. The solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. We employ the multigrid method for solving the resulted linear system. Multigrid method is an iterative method which has grid independently convergence and solves the linear system of equations in small amount of computer time. Numerical results show that the compact finite difference approximation of fourth order, collocation and multigrid methods produce a very efficient method for solving the wave equation. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

7.
In this paper we consider the general linear boundary value problem for ill-posed integrodifferential equations of an arbitrarily fixed finite order. We theoretically substantiate one version of the general spline-projection method. In particular, the obtained general results allow us to deduce the convergence of the spline methods of collocation and subdomains.  相似文献   

8.
Solving partial differential equations (PDE) with strong form collocation and nonlocal approximation functions such as orthogonal polynomials, trigonometric functions, and radial basis functions exhibits exponential convergence rates; however, it yields a full matrix and suffers from ill conditioning. In this work, we discuss a reproducing kernel collocation method, where the reproducing kernel (RK) shape functions with compact support are used as approximation functions. This approach offers algebraic convergence rate, but the method is stable like the finite element method. We provide mathematical results consisting of the optimal error estimation, upper bound of condition number, and the desirable relationship between the number of nodal points and the number of collocation points. We show that using RK shape function for collocation of strong form, the degree of polynomial basis functions has to be larger than one for convergence, which is different from the condition for weak formulation. Numerical results are also presented to validate the theoretical analysis. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 554–580, 2011  相似文献   

9.
Nowadays boundary elemen; methods belong to the most popular numerical methods for solving elliptic boundary value problems. They consist in the reduction of the problem to equivalent integral equations (or certain generalizations) on the boundary Γ of the given domain and the approximate solution of these boundary equations. For the numerical treatment the boundary surface is decomposed into a finite number of segments and the unknown functions are approximated by corresponding finite elements and usually determined by collocation and Galerkin procedures. One finds the least difficulties in the theoretical foundation of the convergence of Galerkin methods for certain classes of equations, whereas the convergence of collocation methods, which are mostly used in numerical computations, has yet been proved only for special equations and methods. In the present paper we analyse spline collocation methods on uniform meshes with variable collocation points for one-dimensional pseudodifferential equations on a closed curve with convolutional principal parts, which encompass many classes of boundary integral equations in the plane. We give necessary and sufficient conditions for convergence and prove asymptotic error estimates. In particular we generalize some results on nodal and midpoint collocation obtained in [2], [7] and [8]. The paper is organized as follows. In Section 1 we formulate the problems and the results, Section 2 deals with spline interpolation in periodic Sobolev spaces, and in Section 3 we prove the convergence theorems for the considered collocation methods.  相似文献   

10.
We present an exponential B-spline collocation method for self-adjoint singularly perturbed boundary value problem. The convergence analysis is given and the method is shown to have second order uniform convergence. Numerical experiments are conducted to demonstrate the efficiency of the method.  相似文献   

11.
In this paper, discrete-time orthogonal spline collocation schemes are proposed for the nonlinear Schrödinger equation with wave operator. These schemes are constructed by using orthogonal spline collocation approaches combined with finite difference methods. The conservative property, the convergence, and the stability of these methods are theoretically analyzed and also verified by extensive numerical experiments. In addition, some interesting phenomena which require further theoretical analysis are discussed numerically.  相似文献   

12.
A B-spline collocation method is presented for nonlinear singularly-perturbed boundary-value problems with mixed boundary conditions. The quasilinearization technique is used to linearize the original nonlinear singular perturbation problem into a sequence of linear singular perturbation problems. The B-spline collocation method on piecewise uniform mesh is derived for the linear case and is used to solve each linear singular perturbation problem obtained through quasilinearization. The fitted mesh technique is employed to generate a piecewise uniform mesh, condensed in the neighborhood of the boundary layers. The convergence analysis is given and the method is shown to have second-order uniform convergence. The stability of the B-spline collocation system is discussed. Numerical experiments are conducted to demonstrate the efficiency of the method.  相似文献   

13.
甘小艇 《计算数学》2021,43(3):337-353
本文主要研究状态转换下欧式Merton跳扩散期权定价模型的拟合有限体积方法.针对该定价模型中的偏积分-微分方程,空间方向采用拟合有限体积方法离散,时间方向构造Crank-Nicolson格式.理论证明了数值格式的一致性、稳定性和单调性,因此收敛至原连续问题的解.数值实验验证了新方法的稳健性,有效性和收敛性.  相似文献   

14.
Based on collocation with Haar and Legendre wavelets, two efficient and new numerical methods are being proposed for the numerical solution of elliptic partial differential equations having oscillatory and non-oscillatory behavior. The present methods are developed in two stages. In the initial stage, they are developed for Haar wavelets. In order to obtain higher accuracy, Haar wavelets are replaced by Legendre wavelets at the second stage. A comparative analysis of the performance of Haar wavelets collocation method and Legendre wavelets collocation method is carried out. In addition to this, comparative studies of performance of Legendre wavelets collocation method and quadratic spline collocation method, and meshless methods and Sinc–Galerkin method are also done. The analysis indicates that there is a higher accuracy obtained by Legendre wavelets decomposition, which is in the form of a multi-resolution analysis of the function. The solution is first found on the coarse grid points, and then it is refined by obtaining higher accuracy with help of increasing the level of wavelets. The accurate implementation of the classical numerical methods on Neumann’s boundary conditions has been found to involve some difficulty. It has been shown here that the present methods can be easily implemented on Neumann’s boundary conditions and the results obtained are accurate; the present methods, thus, have a clear advantage over the classical numerical methods. A distinct feature of the proposed methods is their simple applicability for a variety of boundary conditions. Numerical order of convergence of the proposed methods is calculated. The results of numerical tests show better accuracy of the proposed method based on Legendre wavelets for a variety of benchmark problems.  相似文献   

15.
In the paper, we apply the generalized polynomial chaos expansion and spectral methods to the Burgers equation with a random perturbation on its left boundary condition. Firstly, the stochastic Galerkin method combined with the Legendre–Galerkin Chebyshev collocation scheme is adopted, which means that the original equation is transformed to the deterministic nonlinear equations by the stochastic Galerkin method and the Legendre–Galerkin Chebyshev collocation scheme is used to deal with the resulting nonlinear equations. Secondly, the stochastic Legendre–Galerkin Chebyshev collocation scheme is developed for solving the stochastic Burgers equation; that is, the stochastic Legendre–Galerkin method is used to discrete the random variable meanwhile the nonlinear term is interpolated through the Chebyshev–Gauss points. Then a set of deterministic linear equations can be obtained, which is in contrast to the other existing methods for the stochastic Burgers equation. The mean square convergence of the former method is analyzed. Numerical experiments are performed to show the effectiveness of our two methods. Both methods provide alternative approaches to deal with the stochastic differential equations with nonlinear terms.  相似文献   

16.
Recently, Galerkin and collocation methods have been analysed for some nonlinear boundary integral equations. For the collocation method it has been assumed that the nonlinearity is asymptotically linear. In this paper we remove this restriction. We shall prove the convergence of the collocation method for nonlinear boundary integral equations, when the nonlinearity has a polynomial growth condition. In addition to this the optimal order error estimates follow in Lq(Γ)-norm.  相似文献   

17.
In this work, two-grid characteristic finite volume schemes for the nonlinear parabolic problem are considered. In our algorithms, the diffusion term is discretized by the finite volume method, while the temporal differentiation and advection terms are treated by the characteristic scheme. Under some conditions about the coefficients and exact solution, optimal error estimates for the numerical solution are obtained. Furthermore, the two- grid characteristic finite volume methods involve solving a nonlinear equation on coarse mesh with mesh size H, a large linear problem for the Oseen two-grid characteristic finite volume method on a fine mesh with mesh size h = O(H2) or a large linear problem for the Newton two-grid characteristic finite volume method on a fine mesh with mesh size h = 0(I log hll/2H3). These methods we studied provide the same convergence rate as that of the characteristic finite volume method, which involves solving one large nonlinear problem on a fine mesh with mesh size h. Some numerical results are presented to demonstrate the efficiency of the proposed methods.  相似文献   

18.
H. Ammari In this article, an innovative technique so‐called spectral meshless radial point interpolation (SMRPI) method is proposed and, as a test problem, is applied to a classical type of two‐dimensional time‐fractional telegraph equation defined by Caputo sense for (1 < α≤2). This new methods is based on meshless methods and benefits from spectral collocation ideas, but it does not belong to traditional meshless collocation methods. The point interpolation method with the help of radial basis functions is used to construct shape functions, which play as basis functions in the frame of SMRPI method. These basis functions have Kronecker delta function property. Evaluation of high‐order derivatives is not difficult by constructing operational matrices. In SMRPI method, it does not require any kind of integration locally or globally over small quadrature domains, which is essential of the finite element method (FEM) and those meshless methods based on Galerkin weak form. Also, it is not needed to determine strict value for the shape parameter, which plays an important role in collocation method based on the radial basis functions (Kansa's method). Therefore, computational costs of SMRPI method are less expensive. Two numerical examples are presented to show that SMRPI method has reliable rates of convergence. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Meshless method with ridge basis functions   总被引:1,自引:0,他引:1  
Meshless collocation methods for the numerical solutions of PDEs are increasingly adopted due to their advantages including efficiency and flexibility, and radial basis functions are popularly employed to represent the solutions of PDEs. Motivated by the advantages of ridge basis function representation of a given function, such as the connection to neural network, fast convergence as the number of terms is increased, better approximation effects and various applications in engineering problems, a meshless method is developed based on the collocation method and ridge basis function interpolation. This method is a truly meshless technique without mesh discretization: it neither needs the computation of integrals, nor requires a partition of the region and its boundary. Moreover, the method is applied to elliptic equations to examine its appropriateness, numerical results are compared to that obtained from other (meshless) methods, and influence factors of accuracy for numerical solutions are analyzed.  相似文献   

20.
分析了Rd,d=2,3维不可压缩流Stokes问题低次元稳定有限体积方法,它主要利用局部压力投影方法对两种流行但不满足inf-sup条件的有限元配对(P_1-P_0和P_1-P_1)在有限体积方法的框架下进行稳定;利用有限元与有限体积方法的等价性进行有限体积方法理论分析.结果表明不可压缩流Stokes问题在f∈Hd,d=2,3维不可压缩流Stokes问题低次元稳定有限体积方法,它主要利用局部压力投影方法对两种流行但不满足inf-sup条件的有限元配对(P_1-P_0和P_1-P_1)在有限体积方法的框架下进行稳定;利用有限元与有限体积方法的等价性进行有限体积方法理论分析.结果表明不可压缩流Stokes问题在f∈H1情况下,本文方法得到的解与稳定有限元方法解之间具有O(h1情况下,本文方法得到的解与稳定有限元方法解之间具有O(h2)阶超收敛阶结果,且稳定有限体积方法取得了与稳定有限元方法相同的收敛速度,与稳定有限元方法比较,稳定有限体积方法计算简单高效,同时保持物理守恒,因此在实际应用中具有很好的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号