首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
In this article, we introduce a high‐order accurate method for solving the two dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivatives of linear hyperbolic equation and collocation method for the time component. The resulted method is unconditionally stable and solves the two‐dimensional linear hyperbolic equation with high accuracy. In this technique, the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method give a very efficient approach for solving the two dimensional linear hyperbolic equation. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

2.
The aim of this paper is to propose a multigrid method to obtain the numerical solution of the one‐dimensional nonlinear sine‐Gordon equation. The finite difference equations at all interior grid points form a large sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a compact finite difference scheme of fourth‐order for discretizing the spatial derivative and the standard second‐order central finite difference method for the time derivative. The proposed method uses the Richardson extrapolation method in time variable. The obtained system has been solved by V‐cycle multigrid (VMG) method, where the VMG method is used for solving the large sparse linear systems. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional sine‐Gordon equation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, we introduce a high‐order accurate method for solving one‐space dimensional linear hyperbolic equation. We apply a compact finite difference approximation of fourth order for discretizing spatial derivative of linear hyperbolic equation and collocation method for the time component. The main property of this method additional to its high‐order accuracy due to the fourth order discretization of spatial derivative, is its unconditionally stability. In this technique the solution is approximated by a polynomial at each grid point that its coefficients are determined by solving a linear system of equations. Numerical results show that the compact finite difference approximation of fourth order and collocation method produce a very efficient method for solving the one‐space‐dimensional linear hyperbolic equation. We compare the numerical results of this paper with numerical results of (Mohanty, 3 .© 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

4.
In this paper, we propose two compact finite difference approximations for three-dimensional biharmonic equation with Dirichlet boundary conditions of second kind. In these methods there is no need to define special formulas near the boundaries and boundary conditions are incorporated with these techniques. The unknown solution and its second derivatives are carried as unknowns at grid points. We derive second-order and fourth-order approximations on a 27 point compact stencil. Classical iteration methods such as Gauss–Seidel and SOR for solving the linear system arising from the second-order and fourth-order discretisation suffer from slow convergence. In order to overcome this problem we use multigrid method which exhibit grid-independent convergence and solve the linear system of equations in small amount of computer time. The fourth-order finite difference approximations are used to solve several test problems and produce high accurate numerical solutions.  相似文献   

5.
We present a sixth-order explicit compact finite difference scheme to solve the three-dimensional (3D) convection-diffusion equation. We first use a multiscale multigrid method to solve the linear systems arising from a 19-point fourth-order discretization scheme to compute the fourth-order solutions on both a coarse grid and a fine grid. Then an operator-based interpolation scheme combined with an extrapolation technique is used to approximate the sixth-order accurate solution on the fine grid. Since the multigrid method using a standard point relaxation smoother may fail to achieve the optimal grid-independent convergence rate for solving convection-diffusion equations with a high Reynolds number, we implement the plane relaxation smoother in the multigrid solver to achieve better grid independency. Supporting numerical results are presented to demonstrate the efficiency and accuracy of the sixth-order compact (SOC) scheme, compared with the previously published fourth-order compact (FOC) scheme.  相似文献   

6.
In this paper, we have developed a fourth-order compact finite difference scheme for solving the convection-diffusion equation with Neumann boundary conditions. Firstly, we apply the compact finite difference scheme of fourth-order to discrete spatial derivatives at the interior points. Then, we present a new compact finite difference scheme for the boundary points, which is also fourth-order accurate. Finally, we use a Padé approximation method for the resulting linear system of ordinary differential equations. The presented scheme has fifth-order accuracy in the time direction and fourth-order accuracy in the space direction. It is shown through analysis that the scheme is unconditionally stable. Numerical results show that the compact finite difference scheme gives an efficient method for solving the convection-diffusion equations with Neumann boundary conditions.  相似文献   

7.
A new shift‐adaptive meshfree method for solving a class of time‐dependent partial differential equations (PDEs) in a bounded domain (one‐dimensional domain) with moving boundaries and nonhomogeneous boundary conditions is introduced. The radial basis function (RBF) collocation method is combined with the finite difference scheme, because, unlike with Kansa's method, nonlinear PDEs can be converted to a system of linear equations. The grid‐free property of the RBF method is exploited, and a new adaptive algorithm is used to choose the location of the collocation points in the first time step only. In fact, instead of applying the adaptive algorithm on the entire domain of the problem (like with other existing adaptive algorithms), the new adaptive algorithm can be applied only on time steps. Furthermore, because of the radial property of the RBFs, the new adaptive strategy is applied only on the first time step; in the other time steps, the adaptive nodes (obtained in the first time step) are shifted. Thus, only one small system of linear equations must be solved (by LU decomposition method) rather than a large linear or nonlinear system of equations as in Kansa's method (adaptive strategy applied to entire domain), or a large number of small linear systems of equations in the adaptive strategy on each time step. This saves a lot in time and memory usage. Also, Stability analysis is obtained for our scheme, using Von Neumann stability analysis method. Results show that the new method is capable of reducing the number of nodes in the grid without compromising the accuracy of the solution, and the adaptive grading scheme is effective in localizing oscillations due to sharp gradients or discontinuities in the solution. The efficiency and effectiveness of the proposed procedure is examined by adaptively solving two difficult benchmark problems, including a regularized long‐wave equation and a Korteweg‐de Vries problem. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1622–1646, 2016  相似文献   

8.
In this paper, we consider several finite-difference approximations for the three-dimensional biharmonic equation. A symbolic algebra package is utilized to derive a family of finite-difference approximations for the biharmonic equation on a 27 point compact stencil. The unknown solution and its first derivatives are carried as unknowns at selected grid points. This formulation allows us to incorporate the Dirichlet boundary conditions automatically and there is no need to define special formulas near the boundaries, as is the case with the standard discretizations of biharmonic equations. We exhibit the standard second-order, finite-difference approximation that requires 25 grid points. We also exhibit two compact formulations of the 3D biharmonic equations; these compact formulas are defined on a 27 point cubic grid. The fourth-order approximations are used to solve a set of test problems and produce high accuracy numerical solutions. The system of linear equations is solved using a variety of iterative methods. We employ multigrid and preconditioned Krylov iterative methods to solve the system of equations. Test results from two test problems are reported. In these experiments, the multigrid method gives excellent results. The multigrid preconditioning also gives good results using Krylov methods.  相似文献   

9.
The aim of this paper is to introduce a fast and efficient new two-grid method to solve the d-dimensional (d=1,2,3) Poisson elliptic equations. The finite difference equations at all interior grid points form a large sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The finite difference equations are based on applying a finite difference scheme of two- and four-orders (compact finite difference method) for discretizing the spatial derivative. The obtained linear systems of Poisson elliptic equations have been solved by a new two-grid (NTG) method and we also note that the NTG method which is used for solving the large sparse linear systems is faster and more effective than that of the standard two-grid method. We utilize the local Fourier analysis to show that the spectral radius of the new two-grid method for 1D and 2D models is less than that of the standard two-grid method. As well as, we expand the corresponding algorithm to the new multi-grid method. The numerical examples show the efficiency of the new algorithms for solving the d-dimensional Poisson equations.  相似文献   

10.
The aim of this paper is to propose mixed two‐grid finite difference methods to obtain the numerical solution of the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. The finite difference equations at all interior grid points form a large‐sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a family of finite difference methods for discretizing the spatial and time derivatives. The obtained system has been solved by two‐grid method, where the two‐grid method is used for solving the large‐sparse linear systems. Also, in the proposed method, the spectral radius with local Fourier analysis is calculated for different values of h and Δt. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a high-order and accurate method is proposed for solving the unsteady two-dimensional Schrödinger equation. We apply a compact finite difference approximation of fourth-order for discretizing spatial derivatives and a boundary value method of fourth-order for the time integration of the resulting linear system of ordinary differential equations. The proposed method has fourth-order accuracy in both space and time variables. Moreover this method is unconditionally stable due to the favorable stability property of boundary value methods. The results of numerical experiments are compared with analytical solutions and with those provided by other methods in the literature. These results show that the combination of a compact finite difference approximation of fourth-order and a fourth-order boundary value method gives an efficient algorithm for solving the two dimensional Schrödinger equation.  相似文献   

12.
In this work we propose a fourth-order compact method for solving the one-dimensional nonlinear Klein-Gordon equation. We apply a compact finite difference approximation of fourth-order for discretizing spatial derivative and a fourth-order A-stable diagonally-implicit Runge-Kutta-Nyström (DIRKN) method for the time integration of the resulting nonlinear second-order system of ordinary differential equations. The proposed method has fourth order accuracy in both space and time variables and is unconditionally stable. Numerical results obtained from solving several problems possessing periodic, kinks, single and double-soliton waves show that the combination of a compact finite difference approximation of fourth order and a fourth-order A-stable DIRKN method gives an efficient algorithm for solving these problems.  相似文献   

13.
High-order compact finite difference method for solving the two-dimensional fourth-order nonlinear hyperbolic equation is considered in this article. In order to design an implicit compact finite difference scheme, the fourth-order equation is written as a system of two second-order equations by introducing the second-order spatial derivative as a new variable. The second-order spatial derivatives are approximated by the compact finite difference operators to obtain a fourth-order convergence. As well as, the second-order time derivative is approximated by the central difference method. Then, existence and uniqueness of numerical solution is given. The stability and convergence of the compact finite difference scheme are proved by the energy method. Numerical results are provided to verify the accuracy and efficiency of this scheme.  相似文献   

14.
We consider the numerical pricing of American options under Heston’s stochastic volatility model. The price is given by a linear complementarity problem with a two-dimensional parabolic partial differential operator. We propose operator splitting methods for performing time stepping after a finite difference space discretization. The idea is to decouple the treatment of the early exercise constraint and the solution of the system of linear equations into separate fractional time steps. With this approach an efficient numerical method can be chosen for solving the system of linear equations in the first fractional step before making a simple update to satisfy the early exercise constraint. Our analysis suggests that the Crank–Nicolson method and the operator splitting method based on it have the same asymptotic order of accuracy. The numerical experiments show that the operator splitting methods have comparable discretization errors. They also demonstrate the efficiency of the operator splitting methods when a multigrid method is used for solving the systems of linear equations.  相似文献   

15.
Three-dimensional time-dependent initial-boundary value problems of a novel microscopic heat equation are solved by the mixed collocation–finite difference method in and on the boundaries of a particle when the thickness is much smaller than both the length and width. The collocation method on fixed grid size is used to approximate the space operator, whereas the finite difference scheme is used for time discretization. This new mixed method is applied to a novel heat problem in a particle, in order to compute the temperature distribution in and on the particle's surface. The second derivatives of the basis functions for the spectral approximation are derived. Direct substitution of derivatives in the model transforms the differential equation into a linear system of equations that is solved by the specific preconditioned conjugate gradient method. The high-order accuracy and resolution achieved by the proposed method allows one to obtain engineering-accuracy solution on coarse meshes. The consistency, stability and convergence analysis are provided and numerical results are presented.  相似文献   

16.
The Helmholtz equation arises when modeling wave propagation in the frequency domain. The equation is discretized as an indefinite linear system, which is difficult to solve at high wave numbers. In many applications, the solution of the Helmholtz equation is required for a point source. In this case, it is possible to reformulate the equation as two separate equations: one for the travel time of the wave and one for its amplitude. The travel time is obtained by a solution of the factored eikonal equation, and the amplitude is obtained by solving a complex‐valued advection–diffusion–reaction equation. The reformulated equation is equivalent to the original Helmholtz equation, and the differences between the numerical solutions of these equations arise only from discretization errors. We develop an efficient multigrid solver for obtaining the amplitude given the travel time, which can be efficiently computed. This approach is advantageous because the amplitude is typically smooth in this case and, hence, more suitable for multigrid solvers than the standard Helmholtz discretization. We demonstrate that our second‐order advection–diffusion–reaction discretization is more accurate than the standard second‐order discretization at high wave numbers, as long as there are no reflections or caustics. Moreover, we show that using our approach, the problem can be solved more efficiently than using the common shifted Laplacian multigrid approach.  相似文献   

17.
This article develops an efficient solver based on collocation points for solving numerically a system of linear Volterra integral equations (VIEs) with variable coefficients. By using the Euler polynomials and the collocation points, this method transforms the system of linear VIEs into the matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Euler coefficients. A small number of Euler polynomials is needed to obtain a satisfactory result. Numerical results with comparisons are given to confirm the reliability of the proposed method for solving VIEs with variable coefficients.  相似文献   

18.
The features of a simplified approach to coupled thermal analysis problems as based on the integration of the energy equation for a viscous compressible gas are discussed. The gas velocity field is assumed to be frozen, and a single iteration is run to update it at each step of the coupling procedure. The equation describing the temperature distribution in a solid is discretized using the finite element method, while the Navier-Stokes equations describing the velocity and gas temperature distributions are discretized using the finite-volume method. The system of difference equations resulting from the finite-volume discretization is solved by applying a multigrid method and the generalized minimal residual method. The capabilities of the approaches developed are demonstrated by solving several model problems. The accelerations of the computational algorithm obtained with the use of the full and simplified approaches to the solution of the problem and various methods for solving the system of difference equations are compared.  相似文献   

19.
In this paper, we present two higher-order compact finite difference schemes for solving one-dimensional (1D) heat conduction equations with Dirichlet and Neumann boundary conditions, respectively. In particular, we delicately adjust the location of the interior grid point that is next to the boundary so that the Dirichlet or Neumann boundary condition can be applied directly without discretization, and at the same time, the fifth or sixth-order compact finite difference approximations at the grid point can be obtained. On the other hand, an eighth-order compact finite difference approximation is employed for the spatial derivative at other interior grid points. Combined with the Crank–Nicholson finite difference method and Richardson extrapolation, the overall scheme can be unconditionally stable and provides much more accurate numerical solutions. Numerical errors and convergence rates of these two schemes are tested by two examples.  相似文献   

20.
We consider solving linear, second order, elliptic partial differential equations with boundary conditions of types Dirichlet (DIR), mixed (MIX), and nearly Neumann (Neu) by using software modules that implement five numerical methods (one finite element and four finite differences). They represent both the new generation of improved methods and the traditional ones; they are: Hermite collocation plus band Gauss elimination (HC), ordinary finite differences plus band Gauss elimination (5P), ordinary finite differences with Dyaknov iteration (DY), DY with Richardson extrapolation to achieve fourth order convergence (D4), and ordinary finite differences with multigrid iteration (MG). We carry out a performance evaluation in which we measure the grid size and the computer time needed to achieve three significant digits of accuracy in the solution. We compute the changes in these two measures as we change boundary condition types from DIR to MIX and MIX to NEU and then test the following hypotheses: (i) the performance of all the modules is degraded by introducing the derivative terms into the boundary conditions; (ii) finite element collocation (HC) is least affected; (iii) the fourth order modules (HC and D4) are less affected than the other second order modules; and (iv) the traditional 5-point finite differences (5P) are most affected. We establish these hypotheses with high levels of confidence by using several sample problems. The most significant conclusion is that a high order collocation method is preferred for problems with general operators and derivatives in the boundary conditions. We also establish with considerable confidence that these modules have the following rankings in absolute comparative time performance: MG (best), HC and D4, DY, and 5P (worst).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号