首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel class of low-viscosity benzoxazines has been synthesized from melamine and formaldehyde with phenol or bisphenol A. The striking feature of the class of benzoxazines is the subtle combination of their inherently low viscosity at room temperature, good film-forming characteristics and high chemical and thermal stability mainly due to the introduction of melamine into the network of the polymers. The structure of the benzoxazines has been confirmed by proton nuclear magnetic resonance spectroscopy and fourier transform infrared spectroscopy. Thermal properties of polybenzoxazine have been studied by differential scanning calorimetry, dynamic mechanical analysis and thermogravimetric analysis. Transparent polybenzoxazine films were easily obtained under solvent-free conditions, exhibiting significantly improved toughness compared to the conventional polybenzoxazines. Our research may open a new path for overcoming the present drawbacks of polybenzoxazines such as high brittleness, the difficulties in preparing films and poor processibility via tailoring the structures and properties of amine in the benzoxazines.  相似文献   

2.
《European Polymer Journal》1996,32(9):1037-1044
The synthesis of a functional polysilane, α,ω-dichloro-polymethylphenylsilane (α,ω-dichloro-PMPS), based on the Wurtz-type reductive coupling, has been considered. A study of some reaction parameters shows that both yield and molecular weight distribution of α,ω-dichloro-PMPS can be greatly influenced by the work-up conditions, reaction time, monomer concentration and temperature during the initiation of the polymerization. By varying the synthesis conditions, different ratios of high and low molecular weight fractions were obtained. Samples of different molecular weight were isolated by fractional precipitation of the crude polymers. The chlorine-end functionalization was confirmed by 29Si NMR spectroscopy and the concentration of end-groups was quantitatively determined by elemental analysis of chlorine.  相似文献   

3.
A new class of benzoxazine-containing monomers, namely bis(benzoxazine-maleimide)s, has been prepared from hydroxyphenylmaleimide, paraformaldehyde and various diamines. This series of difunctional maleimide benzoxazines has been difficult to synthesize using previously reported benzoxazine synthesis conditions. The structures of the monomers are confirmed by Fourier transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonance spectroscopy (NMR) and elemental analysis. Polymerization behavior of the monomers is studied by differential scanning calorimetry (DSC), showing two exotherms at different temperature ranges. The 1st exotherm is due to the combination of benzoxazine ring-opening polymerization and addition-polymerization of bismaleimide. FTIR is also used to investigate the polymerization process. The dynamic mechanical analyses (DMA) of the obtained polymers reveal the glass-transition temperatures as high as 289-307 °C. Thermogravimetric analyses (TGA) show the 5% weight loss temperatures ranging from 374 to 383 °C with char yield ranging from 55% to 62% at 800 °C in N2 atmosphere.  相似文献   

4.
Three fluorinated benzoxazines ( 14–16 ), which cannot be synthesized by the traditional one‐step approaches, were synthesized by a three‐step procedure using fluorinated aromatic diamines ( 2–4 ) as starting materials. The structures of the monomers were confirmed by 1H NMR, IR, and high‐resolution mass spectra. The low dielectric thermosets, P( 14–16 ), were prepared by ring‐opening of ( 14–16 ). IR analysis was utilized to monitor the ring‐opening reaction of ( 14–16 ) and to propose the structures of P( 14–16 ). The thermal and dielectric properties of P( 14–16 ) were studied and compared with a nonfluorinated polybenzoxazine P( 13 ), which is derived form the ring‐opening of 2,2‐bis(4‐aminophenoxy)phenyl)propane ( 1 ). Besides, the structure–property relationship of the P( 13–16 ) is discussed. According to Tg measurement, the ortho‐positioned CF3 substituents impart greater steric hindrance for ring‐opening of benzoxazines than CF3 substituents of hexafluoropropane. Incorporating a biphenol F‐based benzoxazine, ( F‐a ), into fluorinated benzoxazines ( 15–16 ) can dilute the effect of ortho‐positioned CF3 substituents on steric hindrance, leading to a higher crosslinking density and consequently a higher Tg. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4970–4983, 2008  相似文献   

5.
The industrial applications of benzoxazines are limited due to their high curing temperatures. This drawback can be overcome by more reactive precursor compared to conventional benzoxazines or by application of efficient initiators. We report the synthesis of a new resorcinol‐based benzoxazine and its cationic polymerization with thermolatent super acids, namely organic sulfonium hexafluoroantimonates. This combination of a reactive precursor and an efficient initiator results in a curing temperature below 100 °C (differential scanning calorimetry onset) which is up to now one of the lowest polymerization temperatures for benzoxazine systems. Furthermore, the thermal stability of the formed polybenzoxazine has not been influenced by the applied initiators. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1693–1699  相似文献   

6.

An ef cient synthesis of diazaalkatetraynes and tetraaza macroheterocycles by the Mannich aminomethylation of α,ω-di(tetra)acetylenes with secondary diamines and aldehydes using CuCl as a catalyst was developed.

  相似文献   

7.
Aside from their outstanding properties such as thermal and chemical stability and excellent mechanical performance, benzoxazines suffer from high polymerization temperatures. Isomeric mixtures of bifunctional benzoxazines based on resorcinol proved already to be highly reactive monomers enabling polymerizations at lower temperatures. This contribution describes the polymerization behavior of single benzoxazine isomers and furthermore the influence of different substituents at the aniline moiety on the curing temperature. Single isomers of bifunctional benzoxazines are now accessible in a straightforward one‐pot synthesis starting from resorcinol and the appropriate N‐phenyl functionalized aniline component. The asymmetric benzoxazine monomers bearing no (R‐a: Tpeak = 179 °C) or electron‐donating substituents in meta position to N (R‐3,5dma: Tpeak = 183 °C) succeed in lowering the polymerization temperature. Additionally, the impact of several initiating systems was studied resulting in a decrease of the polymerization temperature for all studied resorcinol derived benzoxazine isomers (down to 144 °C). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1243–1251  相似文献   

8.
[Ir(cod)Cl](2)/DPPF or BINAP efficiently catalyzed the cycloaddition of α,ω-diynes with nitriles to give pyridines. The reaction can accommodate a very wide range of nitriles. Both aliphatic and aromatic nitriles smoothly reacted with α,ω-diynes to give pyridines. Ten equivalents of unactivated aliphatic nitrile were enough to give the product in high yield. Aliphatic nitriles bearing an acetal or amino moiety could be used for the reaction. The highly regioselective cycloaddition of unsymmetrical diyne bearing two different internal alkyne moieties was achieved. The observed regioselectivity could be reasonably explained by considering the different reactivities of the α-position in iridacyclopentadiene. Regioselective cycloaddition was successfully applied to the synthesis of terpyridine and quinquepyridine. This chemistry was extended to a new and efficient synthesis of oligoheteroarenes. Five aromatic or heteroaromatic rings were connected in a single operation. [Ir(cod)Cl](2)/chiral diphosphine catalyst can be applied to enantioselective synthesis. Kinetic resolution of the racemic secondary benzyl nitrile catalyzed by [Ir(cod)Cl](2)/SEGPHOS gave a central carbon chiral pyridine in 80% ee. The mechanism was analyzed on the basis of the B3LYP level of density functional calculations.  相似文献   

9.
The α,ω-diiodoperfluorooctane is added to undecyl-10-en-1-ol through AIBN initiation yielding the monoadduct in good yield (1,2-dichloroethane, 52%). This is added to N-allylphthalimide (AIBN initiation, 1,2-dichloroethane, 81%). The resulting diiodo compound is hydrodeiodinated with Bu3SnH (toluene, 70%) and the alcohol function is converted to thioacetate through the Mitsunobu reaction (PPh3, DIAD, THF, 75%). The two protecting groups, phthalimide and thioacetate, are removed with hydrazine to give the expected amino terminated semifluorinated long-chain alkanethiol (ethanol, 80%). This compound has been designed in order to form mixed fluorinated self-assembled monolayers (SAMs) with semifluorinated long-chain alkanethiol giving access to a new platform system for biosensors. Similar results are reported starting from the α,ω-diiodoperfluorohexane.  相似文献   

10.
A route to macrocyclic polymers based on a new unimolecular ring-closure process has been investigated. It involves the direct end-to-end coupling of an α,ω-bis[chloroiron(III) meso-tetraphenylporphyrin] telechelic linear polystyrene synthesized by living polymerization followed by chain-end functionalization. The corresponding macrocyclic polystyrene was obtained readily and selectively by intramolecular condensation of the α,ω-bis[chloroiron(III) meso-tetraphenylporphyrin] polymer ends in the presence of a base to yield a diiron(III)-μ-oxobis(porphyrin) dimer as ring-closing unit. Addition of dilute HCl was shown to rapidly reconvert the diiron(III)-μ-oxobis(porphyrin) unit into the initial bis[chloroiron(III) porphyrin], demonstrating the selectivity and complete reversibility of the cyclization process. The synthesis and detailed structural characterization of the α,ω-homodifunctional precursor and the corresponding macrocyclic polystyrene along with an analysis of the porphyrin dimerization reaction using NMR spectroscopy and size-exclusion chromatography coupled with a diode array detector are presented.  相似文献   

11.
Three aromatic diamine‐based benzoxazines were successfully prepared by a facile, clean, one‐pot procedure from 1,4‐phenylenediamine ( 1 ), 4,4′‐diaminodiphenyl ether ( 2 ), and 4,4′‐diaminodiphenyl methane ( 3 ), respectively. Their structures were confirmed by NMR spectra and single crystal diffractogram. The effect of the reactivity of diamines on the purity of the resultant benzoxazines was discussed. The resultant benzoxazines were applied as hardeners for cresol novolac epoxy (CNE). The processing window, the latent curing characteristic, and the miscibility of benzoxazine/CNE systems were discussed. Compared with diamines ( 1 and 3 ), ( 1 and 3 )‐based benzoxazines show latent curing characteristic as epoxy hardeners, and wide processing windows can be obtained. Compared with diamine ( 2 ) which is immiscible with CNE in the molten state, ( 2 )‐based benzoxazine shows good miscibility with CNE. Dynamic mechanical analysis shows the Tgs of the benzoxazine/CNE thermosets are as high as 242–243 °C. Thermogravimetric analysis shows the outstanding thermal stability of the resultant thermosets. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2430–2437, 2010  相似文献   

12.
A series of fluorene‐based benzoxazine copolymers were synthesized from the mixture of 9,9‐bis(4‐hydroxyphenyl)fluorene and bisphenol A, and 4,4′‐diaminodiphenyloxide and paraformaldehyde. And the cured polybenzoxazine films derived from these copolymers were also obtained. Fourier transform infrared spectroscopy (FTIR) and hydrogen nuclear magnetic resonances confirmed the structure of these benzoxazines. Their molecular weight was estimated by gel permeation chromatography. The curing behavior of the precursors was monitored by FTIR and differential scanning calorimetry. Dynamic mechanical analysis and thermogravimetric analysis were performed to study the thermal properties of the cured polymers. The cured polybenzoxazines exhibit excellent heat resistance with glass transition temperatures (Tg) of 286–317°C, good thermal stability along with the values of 5% weight loss temperatures (T5) over 340°C, and high char yield over 50% at 800°C. The mechanical properties of the cured polymers were also measured by bending tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Novel benzoxazines were synthesized to prepare nitrogen-doped carbons with high nitrogen content. Monomers (2pd, 3pd) were successfully synthesized from aminopyridine, orth-hydroxybenzaldehyde and paraformaldehyde. Their chemical structures were confirmed via Fourier transform-infrared spectroscopy (FTIR), 1H-NMR and 13C-NMR. The thermogravimetric analysis and elemental analysis results demonstrated that the cured benzoxazines had high char yield and their carbides had high nitrogen content. The nitrogen configurations of the carbons obtained from pyridine-based benzoxazines were pyridinic N, pyrrolic N and graphitic N, which were the active centers in nitrogen-doped carbons. We believe that these pyridine-based benzoxazines will be applied as the precursors for functional carbon materials in many fields such as hydrogen storage, fuel cell and supercapacitor.  相似文献   

14.
New fluorinated poly(ether sulfone)s were prepared from bisphenols and α,ωbis(4-fluorophenylsulfonyl)perfluoroalkanes. The fluorinated sulfone monomers were synthesized by reaction of 4-fluorobenzenethiol salts with perfluoroalkylene diiodides, followed by oxidation. Sodium carbonate mediated polymerization gave high molecular weight polymers in excellent yield. The polymers are generally soluble in chlorinated hydrocarbons and some dipolar solvents, are amorphous with Tg's in the range of 120–160°C and are stable to 400°C. They form clear, colorless films by solution casting. Cast films have dielectric constants and dissipation factors somewhat below those of typical poly(ether sulfone)s, and show good permeability and selectivity for O2/N2 gas separations.  相似文献   

15.
The synthesis of stereoregular telechelic polypropylene (PP) and their use to access triblock amphiphilic copolymers with the PP block located in the center is described. The strategy consists of selectively copolymerizing propylene and a di-functional co-monomer (1,3-diisopropenylbenzene) to yield a α,ω-substituted polypropylene. Initiation of the copolymerization favors insertion of DIB over propylene; propagation steps favor insertion of propylene. Termination via a chain-transfer reaction yields the terminal unsaturation of the polymer. The telechelic polypropylene is then converted into α,ω-hydroxyl-terminated polypropylene and used as a macroinitiator for the synthesis of triblock copolymers. Water-soluble amphiphilic triblock polymers are also synthesized. The use of catalytic reactions simultaneously provides the stereocontrol of the polypropylene and high productivity (multiple chains of block copolymer per metal center).  相似文献   

16.
An efficient method for the selective synthesis of previously unknown α,ω-bis-1,5,3-dithiazepinanes based on the transamination reaction of N-tert-butyl-1,5,3-dithiazepinane and recyclization reaction of 1-oxa-3,6-dithiacycloheptane with aliphatic diamines in the presence of SmCl3·6H2O as the catalyst, has been developed.  相似文献   

17.
Cyclic polyisoprenes have been synthesized by reaction of α,ω-dilithiopolyisoprenes with dichlorodimethylsilane or 1,2-bis(isopropenyl-4-phenyl) ethane (BIPE). Using the dihalide compound, the effect of the solvent polarity on the coupling reaction is more pronounced in the case of α,ω-dilithiopolyisoprene than with monofunctional polyisoprenyllithium. The yield in cyclic compound falls from 88% in pure hexane down to 53% in the presence of 15 vol% of tetrahydrofurane (THF). Using the nonconjugated diene (BIPE) as linking agent the addition of THF is required but the formed cycle retains its living character and allows the synthesis of cycles having two arms (after addition of isoprene) and of a bicyclic structure after a second cyclization reaction.  相似文献   

18.
Novel monofunctional brominated benzoxazine 3‐(2,4,6‐tribromophenyl)‐3,4‐dihydro‐2H‐1,3‐benzoxazine (P‐bra) and bifunctional brominated benzoxazine 6,6′‐bis(3‐(2,4,6‐tribromophenyl)‐3,4‐dihydro‐2H‐1,3‐benzoxazinyl) isopropane (B‐bra) were prepared and highly thermally stable polybenzoxazines were obtained by the thermal cure of the corresponding benzoxazines monomers. The chemical structures of these novel monomers were confirmed by FITR, 1H‐NMR and elemental analysis. FTIR spectra and differential scanning calorimetry (DSC) suggested that the polymerization was thermally initiated and occurred via ring‐opening of the monomer in each case. Thermogravimetric analysis (TGA) indicated that brominatation could have a profound effect on increasing char yield and on thermal degradation temperatures. The results of UL‐94 burn test showed that the polybenzoxazines prepared from P‐bra and B‐bra had good flame retardance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

The influence of the H-bond acceptors strength of het-eroatoms present in α,ω-diamines on the reaction course leading to the formation of macrocyclic Schiff bases was studied. For strong acceptors like oxygen and nitrogen atoms the highest yield was obtained. Similar effect was observed for diamines possessing two oxygen atoms, while the presence of three oxygen resulted only in polymerisation reactions.  相似文献   

20.
A series of difunctional fluorene-based benzoxazine monomers were synthesized from the reaction of 9,9-bis-(4-hydroxyphenyl)-fluorene with formaldehyde and primary amines including aniline, o-toluidine, n-butylamine, and n-octylamine. Their chemical structures were confirmed by FT-IR, 1H and 13C NMR analyses. The curing behaviors of the precursors were monitored by differential scanning calorimetry (DSC) and FT-IR. The thermal properties of cured polymers were evaluated with DSC and thermogravimetric analysis (TGA). The fluorene-based polybenzoxazines show the typical curing characteristic of oxazine ring-opening for difunctional benzoxazines centred at 231-250 °C, and remarkably higher glass transition temperature and better thermal stability ascribed to the high rigidity, high aromatic content, and intermolecular and intramolecular hydrogen bonding. The thermal decomposition temperature and char yield of aromatic amine-fluorene-based polybenzoxazines are much higher than those of aliphatic amine-based polybenzoxazines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号