首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
In this study, divinylbenzene (DVB) was used as the cross-linker to prepare alkyl methacrylate (AlMA) monoliths for incorporating π-π interactions between the aromatic analytes and AlMA-DVB monolithic stationary phases in capillary LC analysis. Various AlMA/DVB ratios were investigated to prepare a series of 30% AlMA-DVB monolithic stationary phases in fused-silica capillaries (250-μm i.d.). The physical properties (such as porosity, permeability, and column efficiency) of the synthesized AlMA-DVB monolithic columns were investigated for characterization. Isocratic elution of phenol derivatives was first employed to evaluate the suitability of the prepared AlMA-DVB columns for small molecule separation. The run-to-run (0.16–1.20%, RSD; n = 3) and column-to-column (0.26–2.95%, RSD; n = 3) repeatabilities on retention times were also examined using the selected AlMA-DVB monolithic columns. The π-π interactions between the aromatic ring and the DVB-based stationary phase offered better recognition on polar analytes with aromatic moieties, which resulted in better separation resolution of aromatic analytes on the AlMA-DVB monolithic columns. In order to demonstrate the capability of potential environmental and/or food safety applications, eight phenylurea herbicides with single benzene ring and seven sulfonamide antibiotics with polyaromatic moieties were analyzed using the selected AlMA-DVB monolithic columns.  相似文献   

2.
The reduction of analysis time, cost, and improvement of separation efficiency are the main requirements in the development of high‐throughput assay methods in bioanalysis. It can be achieved either by ultra‐high‐performance liquid chromatography (UHPLC) using stationary phases with small particles (<2 μm) at high back pressures or by using opposite direction—monolithic stationary phases with low back pressures. The application of new types of monolithic stationary phases for UHPLC is a novel idea combining these two different paths. The aim of this work was to test the recently introduced second‐generation of monolithic column Chromolith® HighResolution for UHPLC analysis of liposoluble vitamins in comparison with core‐shell and fully porous sub‐2 μm columns with different particle sizes, column lengths, and shapes. The separation efficiency, peak shape, resolution, time of analysis, consumption of mobile phase, and lifetime of columns were calculated and compared. The main purpose of the study was to find a new, not only economical option of separation of liposoluble vitamins for routine practice.  相似文献   

3.
The ability to control the external porosity and to tune the dimensions of the macropore size on multiple length scales provides the possibility of tailoring the monolithic support structure towards separation performance. This paper discusses the properties of conventional polymer–monolithic stationary phases and its limitations regarding the effects of morphology on kinetic performance. Furthermore, guidelines to improve the macropore structure are discussed. The optimal monolithic macropore structure is characterized by high external porosity (while maintaining ultra‐high‐pressure stability), high structure homogeneity, polymer globule clusters in the submicron range, and macropores with a diameter tuned toward speed (small diameter in the 100–500 nm range using short beds) or efficiency (larger macropores in the range of 500 nm–1 μm allowing the use of longer column formats). Finally, promising approaches to control the morphology are discussed.  相似文献   

4.
The efficiency of miniaturized liquid chromatography columns with inner diameters between 200 and 300 μm has been investigated using a dedicated micro‐liquid chromatography system. Fully porous, core–shell and monolithic commercially available stationary phases were compared applying van Deemter and kinetic plot analysis. The sub‐2 μm fully porous as well as the 2.7 μm core–shell particle packed columns showed superior efficiency and similar values for the minimum reduced plate heights (2.56–2.69) before correction for extra‐column contribution compared to normal‐bore columns. Moreover, the influence of extra‐column contribution was investigated to demonstrate the difference between apparent and intrinsic efficiency by replacing the column by a zero dead volume union to determine the band spreading caused by the system. It was demonstrated that 72% of the intrinsic efficiency could be reached. The results of the kinetic plot analysis indicate the superior performance of the sub‐2 μm fully porous particle packed column for ultra‐fast liquid chromatography.  相似文献   

5.
In order to elucidate the role of the flow-through characteristics with regard to the column performance in high-performance liquid chromatography (HPLC) native and n-octadecyl bonded monolithic silica rods and columns, respectively of 100 mm length and 4.6 mm ID with mesopores in the range between 10 and 25 nm and macropores in the range between 0.7 and 6.0 μm were examined by mercury intrusion/extrusion, scanning electron microscopy, image analysis and permeability. The obtained data of the flow-through pore sizes and porosity values as well as surface-to-volume ratio of the stationary phase skeleton enabled to predict their influence to the chromatographic separation efficiency. Our data demonstrate that mercury porosimetry is a reliable technique to obtain all the characteristic parameters of the flow-through pores of silica monoliths. An important result of our examination was that the surface-to-volume ratio of monolithic silica skeletons had more significant impact to the separation process, rather than the average flow-through pore sizes. We could also show the essential differences between the particulate and monolithic stationary phases based on theoretical computation. The results, obtained from other characterization methods also indicated the structural complexity of monolithic silica samples. Permeability of columns is a generally applicable parameter to characterize all chromatographic phases no matter the chemistry or format. The correlation coefficient obtained for mercury intrusion and permeability of water was 0.998, though our investigation revealed that the surface modification is more likely influencing the obtained results. Further, the assumption of the cylindrical morphology of flow-through pores is not relevant to the investigated monolithic silica columns. These results on the morphology of the flow-through pores and of the skeletons were confirmed by the image analysis as well. Our main finding is that the flow-through pore sizes are not relevant for the estimation of the chromatographic separation efficiency of monolithic silica columns.  相似文献   

6.
The morphology of organic monolithic stationary phases based on poly(styrene-divinylbenzene) was modified by changing the ratio of monomers to microporogen in order to make them also suitable for small molecule separations. The morphology of the columns was characterized by high-resolution scanning electron micrography, showing larger primary globules and larger macropores, as well as no mesopores >20 nm in the monolithic skeleton. The permeability of the modified monoliths was approximately three times higher than that of columns which have been optimized for large molecule separations, enabling operation of a 30 cm long column at pressures below 250 bar. In the isocratic separation of dansylated amino acids, plate counts of 50000–107000 m−1 were achievable, which are equivalent to efficiencies obtained with 3.1 μm porous particles. The separation performance for small molecules in gradient elution was investigated using mixtures of dansylated amino acids, β-lactam antibiotics, and thyroid hormones. Finally, the modified monolithic capillary columns also proved to be highly efficient in the separation of biopolymers such as peptides and proteins, enabling peak width at half height of 3–8 s and peak capacities of 110–180 in 15–30 min gradient runs.  相似文献   

7.
Monolithic capillary columns were prepared by copolymerization of styrene and divinylbenzene inside a 200 microm i.d. fused silica capillary using a mixture of tetrahydrofuran and decanol as porogen. Important chromatographic features of the synthesized columns were characterized and critically compared to the properties of columns packed with micropellicular, octadecylated poly(styrene-co-divinylbenzene) (PS-DVB-C18) particles. The permeability of a 60 mm long monolithic column was slightly higher than that of an equally dimensioned column packed with PS-DVB-C18 beads and was invariant up to at least 250 bar column inlet pressure, indicating the high-pressure stability of the monolithic columns. Interestingly, monolithic columns showed a 3.6 times better separation efficiency for oligonucleotides than granular columns. To study differences of the molecular diffusion processes between granular and monolithic columns, Van Deemter plots were measured. Due to the favorable pore structure of monolithic columns all kind of diffusional band broadening was reduced two to five times. Using inverse size-exclusion chromatography a total porosity of 70% was determined, which consisted of internodule porosity (20%) and internal porosity (50%). The observed fast mass transfer and the resulting high separation efficiency suggested that the surface of the monolithic stationary phase is rather rough and does not feature real pores accessible to macromolecular analytes such as polypeptides or oligonucleotides. The maximum analytical loading capacity of monolithic columns for oligonucleotides was found to be in the region of 500 fmol, which compared well to the loading capacity of the granular columns. Batch-to-batch reproducibility proved to be better with granular stationary phases compared to monolithic stationary phase, in which each column bed is the result of a unique column preparation process.  相似文献   

8.
Thirty years after their introduction, monolithic stationary phases are an important member of chromatographic phases. When compared to conventional particulate materials, the continuous internal structure of both inorganic silica and organic polymer monoliths allows some hydrodynamic and analytical possibilities that are not provided by conventional particulate stationary phases. Polymer‐based monolithic stationary phases offer simple preparation and straightforward surface modification, which makes them very versatile materials that are applicable, for example, as chromatographic stationary phases, sample enrichment units, enzymatic reactors, and external trigger‐responding materials. On the other hand, current polymer monoliths cannot compete with efficiency provided by superficially porous and sub 2 µm particles. In this highlight article, I take advantage of the 30th anniversary of their introduction to discuss several concerns related to polymer‐based monolithic stationary phases. Particularly, I focus on preparation repeatability, porous properties, swelling of the polymers in organic solvents, column efficiency for small molecules, and heterogeneity of dominant flow‐through pores. In the end, I offer three possible approaches on how to overcome drawbacks related to stationary phases heterogeneity to further increase the applicability of polymer‐based monolithic stationary phases.  相似文献   

9.
A stationary phase was prepared by chemical derivatization of the support particles with a layer of copolymer composed of styrene and N‐phenyl acrylamide. Silica monolith particles of ca. 2.6 µm (volume‐based average) have been prepared as the support particles by sol‐gel reaction followed by differential sedimentation. The particles were reacted with 3‐chloropropyl trimethoxysilane followed by sodium diethyldithiocarbamate to introduce an initiator moiety. Then, the copolymer layer was immobilized via reversible addition‐fragmentation transfer polymerization. The resultant phase was packed in glass‐lined stainless‐steel micro‐columns (1 x 150 mm) and evaluated for the separation of a mixture composed of five peptides (Trp‐Gly, Thr‐Tyr‐Ser, angiotensin I, isotocin and bradykinin). The effect of monomer mixing ratio (styrene versus N‐phenyl acrylamide) on the chromatographic separation efficiency of the stationary phase was examined. A number of theoretical plates (N) as high as 33 600 plates/column (224 000 plates/m, 4.46 µm plate height) was achieved using the column packed with the optimized stationary phase. The column‐to‐column reproducibility based on three columns packed with three different batches of stationary phase was found satisfactory in separation efficiency, retention factor, and asymmetry factor.  相似文献   

10.
Enantioseparations of racemic nonsteroidal anti-inflammatory drugs (naproxen, ibuprofen, ketoprofen, flurbiprofen, suprofen, indoprofen, cicloprofen, and carprofen) were performed by nano-liquid chromatography, employing achiral capillary columns and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CD) or hydroxylpropyl-β-cyclodextrin (HP-β-CD) as a chiral mobile phase additive (CMPA). Working under the same experimental conditions (in terms of mobile phase and linear velocity), the performance of a RP-C18 monolithic column was compared with that of a RP-C18 packed column of the same dimensions (100 μm i.d. × 10 cm). Utilizing a mobile phase composed of 30% ACN (v/v) buffered with 50 mM sodium acetate at pH 3, and containing 30 mM TM-β-CD, the monolithic column provided faster analysis but lower resolution than the packed column. This behavior was ascribed to the high permeability of the monolithic column, as well as to its minor selectivity. HP-β-CD was chosen as an alternative to TM-β-CD. Employing the monolithic column, the effects of different parameters such as HP-β-CD concentration, mobile phase composition, and pH on the retention factor and the chiral resolution of the analytes were studied. For the most of the analytes, enantioresolution (which ranged from R s = 1.80 for naproxen to R s = 0.86 for flurbiprofen) was obtained with a mobile phase consisting of sodium acetate buffer (25 mM, pH 3), 10% MeOH, and 15 mM HP-β-CD. When the same experimental conditions were used with the packed column, no compound eluted within 1 h. Upon increasing the percentage of organic modifier to favor analyte elution, only suprofen eluted within 30 min, with an R s value of 1.14 (20% MeOH). Replacing MeOH with ACN resulted in a loss of enantioresolution, except for naproxen (R s = 0.89).  相似文献   

11.
This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol–gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 μA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases.  相似文献   

12.
Monolithic capillary columns have been prepared in fused‐silica capillaries by radical co‐polymerization of ethylene dimethacrylate and butyl methacrylate in the presence of porogen solvent mixtures containing various concentration ratios of 1‐propanol, 1,4‐butanediol, and water with azobisisobutyronitrile as the initiator of the polymerization reaction. The through pores in organic polymer monolithic columns can be characterized by “equivalent permeability particle size”, and the mesopores with stagnant mobile phase by “equivalent dispersion particle size”. Increasing the concentration of propanol in the polymerization mixture diminishes the pore volume and size in the monolithic media and improves the column efficiency, at a cost of decreasing permeability. Organic polymer monolithic capillary columns show similar retention behaviour to packed alkyl silica columns for compounds with different polarities characterized by interaction indices, Ix, but have different methylene selectivities. Higher concentrations of propanol in the polymerization mixture increase the lipophilic character of the monolithic stationary phases. Best efficiencies and separation selectivities were found for monolithic columns prepared using 62–64% propanol in the porogen solvent mixture. To allow accurate characterization of the properties of capillary monolithic columns, the experimental data should be corrected for extra‐column contributions.  相似文献   

13.
Fluorinated porous materials, which can provide specific fluorine-fluorine interaction, hold great promise for fluoride analysis. Here, a novel fluorinated covalent-organic polymer was prepared by using 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 2,3,5,6-tetrafluorotelephtal aldehyde as the precursors and introduced as stationary phase for open-tubular capillary electrochromatography. The as-synthesized fluorinated covalent-organic polymer and the modified capillary column were characterized by infrared spectroscopy, scanning electron microscopy, and energy dispersive X-ray spectrometry. Based on strong hydrophobic interaction and fluorine–fluorine interaction provided by fluorinated covalent-organic polymer coating layer, the modified column showed powerful separation selectivity toward hydrophobic compounds, organic fluorides, and fluorinated pesticides. Additionally, the fluorinated covalent-organic polymer with good porosity and regular shape was uniformly and tightly coated on the capillary inner wall. The obtained highest column efficiency could reach up to 1.2 × 105 plates⋅m−1 for fluorophenol. The loading capacity of the modified column can reach 141 pmol for trifluorotoluene. Besides, the relative standard deviations of retention times for intraday run (n = 5), interday run (n = 3), and between columns (n = 3) were all less than 2.55%. Significantly, this novel fluorinated material-based stationary phase shows great application potential in fluorides analysis.  相似文献   

14.
Fourteen commercially available particle-packed columns and a monolithic column for hydrophilic interaction liquid chromatography (HILIC) were characterized in terms of the degree of hydrophilicity, the selectivity for hydrophilic-hydrophobic substituents, the selectivity for the regio and configurational differences in hydrophilic substituents, the selectivity for molecular shapes, the evaluation of electrostatic interactions, and the evaluation of the acidic-basic nature of the stationary phases using nucleoside derivatives, phenyl glucoside derivatives, xanthine derivatives, sodium p-toluenesulfonate, and trimethylphenylammonium chloride as a set of samples. Principal component analysis based on the data of retention factors could separate three clusters of the HILIC phases. The column efficiency and the peak asymmetry factors were also discussed. These data on the selectivity for partial structural differences were summarized as radar-shaped diagrams. This method of column characterization is helpful to classify HILIC stationary phases on the basis of their chromatographic properties, and to choose better columns for targets to be separated. Judging from the retention factor for uridine, these HILIC columns could be separated into two groups: strongly retentive and weakly retentive stationary phases. Among the strongly retentive stationary phases, zwitterionic and amide functionalities were found to be the most selective on the basis of partial structural differences. The hydroxyethyl-type stationary phase showed the highest retention factor, but with low separation efficiency. Weakly retentive stationary phases generally showed lower selectivity for partial structural differences.  相似文献   

15.
We prepared 0.53 and 0.32 mm id monolithic microcolumns by in situ copolymerization of a zwitterionic sulfobetaine functional monomer with bisphenol A glycerolate dimethacrylate (BIGDMA) and dioxyethylene dimetacrylate crosslinkers. The columns show a dual retention mechanism (hydrophilic‐interaction mode) in acetonitrile‐rich mobile phases and RP in highly aqueous mobile phases. The new 0.53 mm id columns provided excellent reproducibility, retention, and separation selectivity for phenolic acids and flavonoids. The new zwitterionic monolithic columns are highly orthogonal, with respect to alkyl silica stationary phases, not only in the hydrophilic‐interaction mode but also in the RP mode. The optimized monolithic zwitterionic microcolumn of 0.53 mm id was employed in the first dimension, either in the aqueous normal‐phase or in the RP mode, coupled with a short nonpolar core‐shell column in the second dimension, for comprehensive 2D LC separations of phenolic and flavonoid compounds. When the 2D setup with the sulfobetaine–BIGDMA column was used for repeated sample analysis, with alternating gradients of decreasing (hydrophilic‐interaction mode), and increasing (RP mode) concentration of acetonitrile on the sulfobetaine–BIGDMA column in the first dimension, useful complementary information on the sample could be obtained.  相似文献   

16.
In this study, the molecular imprinting method was used to separate enantiomeric forms of chiral antidepressant drug, R,S-citalopram (R,S-CIT) in aqueous solution by CEC system combining the advantages of capillary electrophoresis (CE) and high-performance liquid chromatography (HPLC). For that, an amino acid-based molecularly imprinted monolithic capillary column was designed and used as a stationary phase for selective separation of S-citalopram (S-CIT) for the first time. S-CIT was selectively separated from the aqueous solution containing the other enantiomeric form of R-CIT, which is the same in size and shape as the template molecule. Morphology of the molecularly imprinted (MIP S-CIT) and non-imprinted (NIP S-CIT) monolithic capillary columns was observed by scanning electron microscopy. Imprinting efficiency of MIP S-CIT monolithic capillary column used for selective S-CIT separation was verified by comparing with NIP S-CIT and calculated imprinting factor (I.F:1.81) proved the high selectivity of the MIP S-CIT for S-CIT. Cavities formed for S-CIT form enabled selective (α = 2.08) separation of the target molecule from the other enantiomeric R-CIT form. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 7.68 × 10−6 m2/Vs for R,S-CIT at pH 7.0 10 mM PB and 50% ACN ratio. The performance of both MIP S-CIT and NIP S-CIT columns was estimated by repeating the R,S-CIT separations with intra-batch and inter-batch studies for reproducibility of retention times of R,S-CITs. Estimated RSD values that are lower than 2% suggest that the monolithic columns separate R,S-CIT enantiomers without losing separation efficiency.  相似文献   

17.
The duration of the hypercrosslinking reaction has been used to control the extent of small pores formation in polymer‐based monolithic stationary phases. Segments of five columns hypercrosslinked for 30–360 min were coupled via zero‐volume unions to prepare columns with segmented porosity gradients. The steepness of the porosity gradient affected column efficiency, mass transfer resistance, and separation of both small‐molecule alkylbenzenes and high‐molar‐mass polystyrene standards. In addition, the segmented column with the steepest porosity gradient was prepared as a single column with a continuous porosity gradient. The steepness of porosity gradient in this type column was tuned. Compared to a completely hypercrosslinked column, the column with the shallower gradient produced comparable size‐exclusion separation of polystyrene standards but allowed higher column permeability. The completely hypercrosslinked column and the column with porosity gradient were successfully coupled in online two‐dimensional liquid chromatography of polymers.  相似文献   

18.
We characterized thermally polymerized organo-silica hybrid monolithic capillaries to test their applicability in the gradient elution of peptides. We have used a single-pot approach utilizing 3-(methacryloyloxy)propyltrimethoxysilane (MPTMS), ethylene dimethacrylate (EDMA), and n-octadecyl methacrylate (ODM) as functional monomers. The organo-silica monolith containing MPTMS and EDMA was compared with the stationary phase prepared by adding ODM to the original polymerization mixture. Column prepared using a three-monomer system provided a lower accessible volume of flow-through pores, a higher proportion of mesopores, and higher efficiency. We utilized isocratic and gradient elution data to predict peak widths in gradient elution. Both protocols provided comparable results and can be used for peptide peak width prediction. However, applying gradient elution data for peak width prediction seems simpler. Finally, we tested the effect of gradient time on achievable peak capacity in the gradient elution of peptides with a column prepared with a three-monomer system providing a higher peak capacity. However, the performance of hybrid organo-silica monolithic stationary phases in gradient elution of peptides must be improved compared to other monolithic stationary phases. The limiting factor is column efficiency in highly aqueous mobile phases, which needs to be focused on.  相似文献   

19.
Three monomers, octakis (3‐mercaptopropyl) octasilsesquioxane, 1,2,4‐trivinylcyclohexane and isophytol were employed to synthesize a novel monolithic stationary phase via photo‐initiated thiol‐ene click polymerization for reversed‐phase liquid chromatography. Several factors such as porogenic system, reaction time and the molar ratio of functional groups were investigated in detail. The resulting poly(POSS‐co‐TVCH‐co‐isophytol) monolithic column exhibited suitable permeability for fast separation and outstanding thermal stability. Five alkylbenzenes were employed to evaluate the ability of chromatographic separation of the resulting monolithic columns at different flow rates, and showed the highest column efficiencies of 90,200–93,100 N/m (corresponding to 10.4–10.6 μm of plate height) at a velocity of 0.41 mm/s. The baseline separations of five anilines and eight phenols further proved the applicability of poly(POSS‐co‐TVCH‐co‐isophytol) monolithic column in the separation of small molecules.  相似文献   

20.
A novel mercaptotetrazole‐silica hybrid monolithic column was prepared for capillary liquid chromatography, in which the thiol‐end mercaptotetrazole was mixed with hydrolyzed γ‐methacryloxypropyltrimethoxysilane and tetramethyloxysilane for the co‐polycondensation and thiol‐ene click reaction in a one‐pot process. The effects of the molar ratio of silanes, the amount of mercaptotetrazole, and the volume of porogen on the morphology, permeability and pore properties of the as‐prepared mercaptotetrazole‐silica hybrid monoliths were investigated in detail. A series of test compounds including alkylbenzenes, amides and anilines were employed for evaluating the retention behaviors of the mercaptotetrazole‐silica hybrid monolithic columns. The results demonstrated that the mercaptotetrazole‐silica hybrid monoliths exhibited hydrophobic, hydrophilic as well as ion‐exchange interaction. The run‐to‐run, column‐to‐column and batch‐to‐batch reproducibilities of the mercaptotetrazole‐silica hybrid monoliths were satisfactory with the relative standard deviations less than 1.4 (= 5), 3.9 (= 3) and 4.0% (= 5), respectively. In addition, the mercaptotetrazole‐silica hybrid monolith was further applied to the separation of sulfonamides, nucleobases and protein tryptic digests. These successful applications confirmed the promising potential of the mercaptotetrazole‐silica hybrid monolith in the separation of complex samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号