首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shabi Abbas Zaidi 《Electrophoresis》2013,34(9-10):1375-1382
To extend the application of molecularly imprinted polymers, the dual‐templates molecularly imprinted monolithic columns were developed in a capillary format. Two templates serotonin and histamine were simultaneously imprinted using two different functional monomers such as methacrylic acid (MAA) and methylenesuccinic acid (MSA) in a mixture of ethylene glycol dimethacrylate (EDMA) as a cross‐linker and AIBN as polymerization initiator dissolved in DMF as porogen. The resulting molecular imprinted polymers (MIPs) were characterized based on their performance in the CEC separation of two imprinted templates. The optimization parameters such as pH, ACN composition, and concentration of the eluent were varied to achieve best resolution and efficiency for CEC separation of templates with each MIP column. It was found that the MIP monolith column fabricated using MSA offered better resolution and separation efficiency compared to column fabricated with MAA. This work utilized the dual‐templates imprinting approach successfully and broadens the scope of multi‐templates imprinting capabilities in capillary format in CEC application.  相似文献   

2.
Molecularly imprinted monolithic columns were prepared for chiral separation of tyrosine and its amino acid derivatives by in situ therm-initiated copolymerization of methacrylic acid, 4-vinylpyridine and ethylene glycol dimethacrylate. The enantiomers were rapidly separated on monolithic columns in less than 10 min by pressurized capillary electrochromatography (pCEC). The influences of several parameters such as the content of cross-linking monomer on the composition of the pre-polymerization mixture were systematically investigated. The influence of the pCEC conditions including the composition of the mobile phase was also optimized to obtain the good enantioseparation. It was found that in addition to molecularly imprinted recognition, chromatographic retention and electrophoretic migration play important roles in the retention and chiral recognition of molecularly imprinted polymer (MIP) columns. The cross-selectivity for similar amino acids and its derivatives were systematical investigated for understanding the recognition mechanism on the MIP monolithic columns. The results indicated that molecularly imprinted polymer recognizes the template molecule by its molecular shape defined binding cavity.  相似文献   

3.
分子印迹整体柱在高效液相色谱和电色谱手性分离中的应用   总被引:15,自引:0,他引:15  
在常规不锈钢色谱管中以甲基丙烯酸为功能单体,采用原位聚合法制备了(5S,11S)-特罗格尔碱(S-TB)的印迹整体柱。考察了流动相中添加不同量的醋酸和水对分离的影响,结合台阶梯度洗脱模式在S-TB整体柱上实现了对TB消旋体的快速分离。另外,以碱性单体2-二甲基乙基胺甲基丙烯酸酯(DAMA)为功能单体,在毛细管中采用原位聚合法制备了毛细管分子印迹整体柱,用于在毛细管电色谱(CEC)中对消旋体1,1′-联-2-萘酚(BNL)进行手性分离。结果表明,以AMA为功能单体可以制备其他酸性模板的分子印迹聚合物,从而扩大了分子印迹聚合物MIP)在CEC分离中的应用范围。  相似文献   

4.
We have prepared a hydrophilic molecularly imprinted polymer (MIP) for the hydrophobic compound bisphenol A (BPA) in aqueous solution using 3-acrylamido-N,N,N-trimethylpropan-1-aminium chloride (AMTC) as the functional monomer. Under redox-polymerization conditions, BPA forms an ion-pair with AMTC, which was confirmed by 1H-NMR titration. The imprinting effect in aqueous solution was evaluated by comparison of this material with the corresponding non-imprinted polymer (NIP) and with a control polymer (CP) bearing no AMTC. The MIP showed the highest activity among the three polymers, and the imprinting factors as calculated from the amount of BPA bound to the MIP divided by the amounts bound to NIP and CP, respectively, are 1.8 and 6.0. The MIP was selective for BPA in aqueous solution, while structurally related compounds are not recognized. Such a selectivity for a hydrophobic compound is rarely observed in aqueous medium because non-specific binding of BPA inevitably leads to hydrophobic interaction.
Figure
A hydrophilic molecularly imprinted polymer (MIP) for bisphenol A (BPA) recognition was prepared in aqueous solution. The obtained MIP (BPA-MIP) showed good selectivity under aqueous conditions  相似文献   

5.
Molecularly imprinted monolithic columns for selective separation of enrofloxacin were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT)-mediated radical polymerization. Different ratios of initiation system were used in the synthesis. The structures of the monoliths were characterized to study the relationship between the synthetic conditions and morphology of the monolithic material. The separation performance of the monoliths was evaluated by liquid chromatography. Under optimized synthetic conditions, a monolithic molecularly imprinted polymer (MIP) with high selectivity and improved column efficiency was obtained. The research has shown that RAFT polymerization provides more adjustable conditions for making monolithic materials with different morphologies. The results also demonstrated that homogeneous macro-pore size distribution and large specific surface area are the key factors providing good separation ability and column efficiency for MIP monolithic structures.  相似文献   

6.
金雨  李前进  王奋英  李建林 《化学通报》2021,84(12):1306-1313
分子印迹整体柱在分离科学领域获得广泛应用,能够用于萃取分离有机小分子、特异性识别金属离子和蛋白质分离。本文综述了分子印迹整体柱的印迹策略、材料分类与应用,重点介绍了新型的分子印迹整体柱,并从特异性、分离效率、快速检测等方面讨论了分子印迹整体柱目前面临的挑战,展望了其发展前景和方向。  相似文献   

7.
The recognition mechanism of molecularly imprinted polymer (MIP) in capillary electrochromatography (CEC) is complicated since it possesses a hybrid process, which comprises the features of chromatographic retention, electrophoretic migration and molecular imprinting. For an understanding of the molecular recognition of MIP in CEC, a monolithic MIP in a capillary with 1,1'-binaphthyl-2,2'-diamine (BNA) imprinting was prepared by in situ copolymerization of imprinted molecule, methacrylic acid and ethylene glycol dimethacrylate in porogenic solvent, a mixture of toluene-isooctane. Strong recognition ability and high column performance (theory plates was 43,000 plates/m) of BNA were achieved on this monolithic MIP in CEC mode. In addition, BNA and its structural analogue, 1,1'-bi-2, 2'-naphthol, differing in functional groups, were used as model compounds to study imprinting effect on the resultant BNA-imprinted monolithic column, a reference column without imprinting of BNA and a open capillary. The effects of organic modifier concentration, pH value of buffer, salt concentration of buffer and column temperature on the retention and recognition of two compounds were investigated. The results showed that the molecular recognition on MIP monolith in CEC mode mainly derived from imprinting cavities on BNA-imprinted polymer other than chromatographic retention and electrophoretic migration.  相似文献   

8.
A monolithic molecularly imprinted polymer (monolithic MIP) was designed and prepared for chiral separation of nateglinide and its L-enantiomer. The enantiomers were rapidly separated on this novel monolithic MIP based chiral stationary phase (MIP-CSP), whereas the enantioseparation was not obtained on the non-imprinted polymer (NIP). Chiral recognition was found to be dependent on the stereo structures and the arrangement of functional groups of the imprinted molecule and the cavities on MIP. Thermodynamic data (deltadeltaH and deltadeltaS) obtained by Van't Hoff plots revealed an enthalpy-controlled enantioseparation. The binding capacity was evaluated by frontal analysis. Monolithic nateglinide-MIP had an effective number of binding sites Bt = 41.15 micromol g(-1) with a dissociation constant of Kd = 7.40 mM. The morphological characteristics of the monolithic MIP were investigated by pore analysis and scanning electron microscope (SEM). Results showed that both mesopores and macropores were formed in the monolith. Over all, this study presents a new and practical possibility for providing high rates of mass transfer, fast separations and high efficiencies without the pressure constraints of the traditional bulk molecularly imprinted polymers, through the monolithic MIPs.  相似文献   

9.
A polymethacrylate‐based molecularly imprinted monolithic column bearing mixed functional monomers, using non‐covalent imprinting approach, was designed for the rapid separation of nitroimidazole compounds. The new monolithic column has been prepared via simple in situ polymerization of 2‐hydroxyethyl methacrylate, dimethylaminoethyl methacrylate and ethylene dimethacrylate, using (S)‐ornidazole ((S)‐ONZ) as template in a binary porogenic mixture consisting of toluene and dodecanol. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of monomers as well as the composition of the porogenic solvent. The column performance was evaluated in pressure‐assisted CEC mode. Separation conditions such as pH, voltage, amount of organic modifier and salt concentration were studied. The optimized monolithic column resulted in excellent separation of a group of structurally related nitroimidazole drugs within 10 min in isocratic elution condition. Column efficiencies of 99 000, 80 000, 103 000, 60 000 and 99 000 plates/m were obtained for metronidazole, secnidazole, ronidazole, tinidazole and dimetridazole, respectively. Parallel experiments were carried out using molecularly imprinted and non‐imprinted capillary columns. The separation might be the result of combined effects including hydrophobic, hydrogen bonding and the imprinting cavities on the (S)‐ONZ‐imprinted monolithic column.  相似文献   

10.
The present work reports on the synthesis of a molecularly imprinted polymer (MIP) based on methacrylic acid and ethylene glycol dimethacrylate for sunitinib delivery. Sunitinib (SUT) is a tyrosine kinase inhibitor used in many cancer diseases. Like the majority of the anticancer drugs, SUT suffers of a low bioavailability, and at the same time, it is characterized by a narrow therapeutic window. In order to reduce drug systemic toxicity, we synthesized a MIP‐based drug delivery system for SUT‐controlled release. MIP was obtained by bulk polymerization through the so‐called noncovalent approach. Rebinding experiments were performed to evaluate the success of the imprinting process and the ability of MIP to bind in a specific and selective fashion the template molecule. Resulting data showed that sunitinib rebinding percentage was 70%, while nonimprinted polymer (NIP) rebinding percentage was 46%. A not significant difference was observed between MIP and NIP in semaxanib binding experiments. Moreover, the drug release profiles were studied for both MIP and NIP. A sustained release was observed from sunitinib‐loaded MIP during 24 hours, reaching 58% after 6 hours and 76% at the end‐point. NIP, on the contrary, released almost 90% of the loaded drug within 6 hours. Furthermore, the drug carrier was tested in vitro against MCF‐7 cells, in which the cytotoxic effect of sunitinib released from MIP reached the maximum after 72 hours, while NIP completed its effect within 48 hours. These results demonstrated that molecularly imprinted polymers are suitable systems for SUT release.  相似文献   

11.
The main objective of this study was to develop a new methodology for the preparation of a protein (antigen) that is a molecularly imprinted polymer (MIP, an artificial antibody) modified onto the surface of a silica skeleton in which the resulting stationary phase is thermosensitive. The silica monolithic skeleton with vinyl groups was synthesized in a stainless-steel column by using a mild one-step sol-gel process with two types of precursor: methyltrimethoxysilane (MTMS) and γ-methacryloxypropyltrimethoxysilane (γ-MAPS). Subsequently, three types of the thermosensitive protein MIP were anchored onto the surface of the silica skeleton to prepare the MIP monoliths, which were systematically investigated for back pressure and separation ability at different temperatures to establish good imprinting conditions. Under the optimized imprinting conditions, the chromatographic behavior of the thermosensitive MIP monolith exhibited strong retention ability for the lysozyme template (target antigen) in relation to the nonimprinting monolith (NIP monolith). The imprinting factor (IF) for lysozyme reached 3.48 at 20 °C. Moreover, this new type of artificial antibody displayed favorable binding characteristics for lysozyme over competitive proteins and was further evaluated to selectively separate lysozyme in a real sample by using an on-line method. The run-to-run and column-to-column repeatability measurements of the thermosensitive MIP monoliths were also satisfactory.  相似文献   

12.
A novel prepared method of molecularly imprinted monolithic polymers (MIPs) using 4-hydroxybenzoic acid (4-HBA) as templates for capillary electrochromatography (CEC) was developed. A strategy of high concentration of monomers in the pre-polymerization mixture was used to fulfil the solubility of polar imprinted molecule and reduction of the interference during complex formation. The imprinted polymer capillary monolithic column was synthesized by an in situ therm-initiated copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate with a mixture of toluene-isooctane as a porogenic solvent in the presence of a polar model imprinting molecule, 4-HBA. On the resultant MIP monolithic column, the effect of parameter of CEC on electroosmotic flow (EOF) and the retention of 4-HBA was investigated. The column efficiency of the imprinted molecule, 4-HBA, was 13,000 plates/m. The resolution of isomers of HBA was 5.0 and good molecular recognition was achieved for 4-HBA.  相似文献   

13.
Molecular imprinted solid-phase extraction (MISPE) is a well known technique for the selective extraction and pre-concentration of analytes, are present at low levels in chemically complex materials. Herein, water-soluble, molecularly imprinted polymers (MIP) were prepared for solid-phase extraction of pseudoephedrine hydrochloride (PSE), which was monitored at 256 nm by the UV spectroscopy. MISPE conditions were optimized to allow the selective and determination of PSE in aqueous samples and composite materials, such as biological fluids and human urine. MIP was prepared by precipitation polymerization method, using methacrylic acid as a functional monomer and ethylene glycol dimethacrylate as a cross-linking agent in either acetonitrile or chloroform. The results suggest that the obtained MISPE exhibits high affinity for PSE, and the imprinted polymer demonstrates much higher efficiency than a non-imprinted polymer (NIP). The imprinting-induced extraction was confirmed by the determination of recovery values for NIP (4%) and MIP (80%) polymers, respectively. The binding capacity of the MIP for PSE was found of 47.6 mg g−1.  相似文献   

14.
采用沉淀聚合法以橙皮素为模板分子,2-乙烯基吡啶为功能单体,二甲基丙烯酸乙二醇酯为交联剂,合成了橙皮素分子印迹聚合物。利用紫外光谱法确定了最佳功能单体与配比,优化了合成条件。采用傅立叶变换红外光谱、扫描电子显微镜、静态吸附对聚合物进行表征。实验结果表明,分子印迹聚合物的吸附性能明显优于空白印迹聚合物,且此聚合物对柚皮苷、橙皮苷、柚皮素和橙皮素的相对选择系数分别为1.40,1.39,1.59和2.89,表明该分子印迹聚合物对4种黄烷酮有较好的选择性。将印迹聚合物作为固相萃取填料,对枳实提取液进行分离和富集,结果表明上述4种黄烷酮的提取率分别为72.6%,61.1%,95.4%和93.5%,分离富集效果良好,大大提高了枳实中4种黄烷酮的提取效率。  相似文献   

15.
Zhu G  Fan J  Gao Y  Gao X  Wang J 《Talanta》2011,84(4):1124-1132
A surface molecularly imprinted polymer (MIP) was synthesized by using imidazole as the template and modified silica particles as the support material. The static adsorption, solid phase extraction (SPE) and high-performance liquid chromatography (HPLC) experiments were performed to investigate the adsorption properties and selective recognition characteristics of the polymer for imidazole and its structural analogs. It was shown that the maximum binding capacities of imidazole on the MIP and the non-imprinted polymer (NIP) were 312 and 169 μmol g−1, respectively. The adsorption was fast and the adsorption equilibrium was achieved in 30 min. The binding process could be described by pseudo-second order kinetics. Compared with the corresponding non-imprinted polymer, the molecularly imprinted polymer exhibited much higher adsorption performance and selectivity for imidazole. The selective separation of imidazole from a mixture of 1-hexyl-3-methylimidazolium bromide ([C6mim][Br]) and 2,4-dichlorophenol could be achieved on the MIP-SPE column. The recoveries of imidazole and [C6mim][Br] were 97.6-102.7% and 12.2-17.3%, respectively, but 2,4-dichlorophenol could not be retained on the column. The surface molecularly imprinted polymer presented here may find useful application as a solid phase absorbent to separate trace imidazole in environmental water samples. This may also form the basis for our research program on the preparation and application of alkyl-imidazolium imprinted polymers.  相似文献   

16.
High-quality alloxazine (a flavin isomer) imprinted polymers have been made for the first time. A molecularly imprinted polymer (MIP) for the N1,N3-di-functionalized alloxazine template 2 was made. The MIP prepared for 2 exhibited excellent, highly selective molecular recognition for template 2, as determined by HPLC analysis using columns prepared with the MIP. This has also demonstrated that the core flavin structure can survive the imprinting process.  相似文献   

17.
In this paper, a novel monolithic stir bar based on molecularly imprinted polymer (MIP) was firstly developed by filling modified neodymium magnet (Nd2Fe14B) powders into a glass tube (60 × 4 mm), followed by the imprinted grafting with bisphenol A (BPA) as the template molecule by thermal polymerization. It has been successfully used for the stir bar sorptive extraction (SBSE) and its extraction performance illustrated that the MIP‐encapsulated stir bar had stronger affinity to the template molecule, compared with the stir bar based on the non‐imprinted molecularly polymer (NIP). Under the optimal extraction conditions, a simple method based on the coupling of MIP‐SBSE with high performance liquid chromatography (HPLC) was used for the selective determination of the model mixtures of BPA, 4‐phenylphenol (PP) and phenol (P) in bottled water. The recoveries of BPA, PP and P were in the range of 88.5‐96.1%, 78.2‐89.7%, 81.3‐89.5% at three spiked levels, respectively, demonstrating that higher extraction and the specific absorption occurred between the template molecule and the prepared MIP stir bar.  相似文献   

18.
Inoue  Naoko  Ooya  Tooru  Toshifumi  Takeuchi 《Mikrochimica acta》2013,180(15):1387-1392

We have prepared a hydrophilic molecularly imprinted polymer (MIP) for the hydrophobic compound bisphenol A (BPA) in aqueous solution using 3-acrylamido-N,N,N-trimethylpropan-1-aminium chloride (AMTC) as the functional monomer. Under redox-polymerization conditions, BPA forms an ion-pair with AMTC, which was confirmed by 1H-NMR titration. The imprinting effect in aqueous solution was evaluated by comparison of this material with the corresponding non-imprinted polymer (NIP) and with a control polymer (CP) bearing no AMTC. The MIP showed the highest activity among the three polymers, and the imprinting factors as calculated from the amount of BPA bound to the MIP divided by the amounts bound to NIP and CP, respectively, are 1.8 and 6.0. The MIP was selective for BPA in aqueous solution, while structurally related compounds are not recognized. Such a selectivity for a hydrophobic compound is rarely observed in aqueous medium because non-specific binding of BPA inevitably leads to hydrophobic interaction.

  相似文献   

19.
Monolithic molecularly imprinted columns are a new class of column that emerged in the early 1990s. These monolithic materials are typically prepared directly inside stainless steel columns or capillary columns without the tedious procedures of grinding, sieving, and column packing. Furthermore, the preparation of this type of MIP is more cost-efficient, because the amount of template molecules required is much lower. In recent years monolithic supports as stationary phases in high-performance liquid chromatography (HPLC) and capillary electrochromatography (CEC) have attracted significant interest because of their ease of preparation, high reproducibility, versatile surface chemistry, and rapid mass transport.  相似文献   

20.
硅胶表面扑灭津分子印迹材料的制备及性能表征   总被引:3,自引:0,他引:3  
以扑灭津为模板分子,在甲苯溶液中经三步反应合成了基于硅胶表面修饰的分子印迹聚合物,并探讨了聚合物制备工艺,验证了聚合物的结构。红外1726cm-1指认印迹膜中的羰基特征峰,元素分析表明印迹材料含碳量18%,N2吸附实验表征印迹膜厚度为0.3nm。应用高效液相色谱-质谱考察了扑灭津和其它3种三嗪农药水溶液中的竞争吸附特性。研究表明:本法制备的表面印迹材料对4种三嗪类农药的吸附均优于参比材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号