首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The porosity of a monolithic capillary column having a structure optimized for gas chromatographic analysis was investigated by means of hydrodynamic and size-exclusion chromatography. It was found that the total porosity of the column exceeded 90%, and the column had a bimodal pore structure with a micropore diameter of about 1.5 nm and a macropore diameter of about 1.2 μm. The column separated with good selectivity high molecular mass polystyrene standards with molecular masses higher than 100 kDa and low molecular mass solutes of up to 500 Da. The structure of monolithic column has to be optimized for application in hydrodynamic chromatography with an aim to provide selectivity on separation of polymers with molecular mass from 1 to 100 kDa.  相似文献   

2.
The porosity of monolithic silica columns is measured by using different analytical methods. Two sets of monoliths were prepared with a given mesopore diameter of 10 and 25 nm, respectively and with gradated macropore diameters between 1.8 and 7.5 microm. After preparing the two sets of monolithic silica columns with different macro- and mesopores the internal, external and total porosity of these columns are determined by inverse size-exclusion chromatography (ISEC) using polystyrene samples of narrow molecular size distribution and known average molecular weight. The ISEC data from the 4.6 mm analytical monolithic silica columns are used to determine the structural properties of monolithic silica capillaries (100 microm I.D.) prepared as a third set of samples. The ISEC results illustrate a multimodal mesopore structure (mesopores are pores with stagnant zones) of the monoliths. It is found by ISEC that the ratio of the different types of pores is dependent on the change in diameter of the macropores (serve as flow-through pores). The porosity data achieved from the mercury penetration measurement and nitrogen adsorption as well of scanning electron microscopy (SEM) and transmission electron microscopy (TEM) pictures are correlated with the results we calculated from the ISEC measurements. The ISEC results, namely the multimodal pore structure of the monoliths, reported in several publications, are not confirmed analyzing the pore structures of the different silica monoliths using all other analytical methods.  相似文献   

3.
Poly(styrene‐co‐divinylbenzene) monolithic stationary phases with two different domain sizes were synthesized by a thermally initiated free‐radical copolymerization in capillary columns. The morphology was investigated at the meso‐ and macroscopic level using complementary physical characterization techniques aiming at better understanding the effect of column structure on separation performance. Varying the porogenic solvent ratio yielded materials with a mode pore size of 200 nm and 1.5 μm, respectively. Subsequently, nano‐liquid chromatography experiments were performed on 200 μm id × 200 mm columns using unretained markers, linking structure inhomogeneity to eddy dispersion. Although small‐domain‐size monoliths feature a relatively narrow macropore‐size distribution, their homogeneity is compromised by the presence of a small number of large macropores, which induces a significant eddy‐dispersion contribution to band broadening. The small‐domain size monolith also has a relatively steep mass‐transfer term, compared to a monolith containing larger globules and macropores. Structural inhomogeneity was also studied at the mesoscopic level using gas‐adsorption techniques combined with the non‐local‐density‐function‐theory. This model allows to accurately determine the mesopore properties in the dry state. The styrene‐based monolith with small domain size has a distinctive trimodal mesopore distribution with pores of 5, 15, and 25 nm, whereas the monolith with larger feature sizes only contains mesopores around 5 nm in size.  相似文献   

4.
A simple and engineering friendly one-step process has been used to prepare zirconium titanium mixed oxide beads with porosity on multiple length scales. In this facile synthesis, the bead diameter and the macroporosity can be conveniently controlled through minor alterations in the synthesis conditions. The precursor solution consisted of poly(acrylonitrile) dissolved in dimethyl sulfoxide to which was added block copolymer Pluronic F127 and metal alkoxides. The millimeter-sized spheres were fabricated with differing macropore dimensions and morphology through dropwise addition of the precursor solution into a gelation bath consisting of water (H(2)O beads) or liquid nitrogen (LN(2) beads). The inorganic beads obtained after calcination (550 °C in air) had surface areas of 140 and 128 m(2) g(-1), respectively, and had varied pore architectures. The H(2)O-derived beads had much larger macropores (5.7 μm) and smaller mesopores (6.3 nm) compared with the LN(2)-derived beads (0.8 μm and 24 nm, respectively). Pluronic F127 was an important addition to the precursor solution, as it resulted in increased surface area, pore volume, and compressive yield point. From nonambient XRD analysis, it was concluded that the zirconium and titanium were homogeneously mixed within the oxide. The beads were analyzed for surface accessibility and adsorption rate by monitoring the uptake of uranyl species from solution. The macropore diameter and morphology greatly impacted surface accessibility. Beads with larger macropores reached adsorption equilibrium much faster than the beads with a more tortuous macropore network.  相似文献   

5.
Silica-based monolithic columns were prepared for HPLC with systematic variations of the tetramethoxysilane (TMOS) and polyethylene oxide (PEO) content as reactants in a sol-gel process accompanied by phase separation. The resulting monoliths showed differences in the macropore and silica skeleton diameter as well as in the corresponding domain sizes (the sum of macropore and skeleton diameter). All monoliths were synthesized with a diameter of 4.6 mm and cladded with a suitable polyaryletheretherketone (PEEK) polymer in a standardized and optimized manner for the subsequent chromatographic evaluation of the resulting monolithic HPLC columns. The columns were tested under normal phase conditions using n-heptane/dioxane (95:5 v/v) as a mobile phase and 2-nitroanisole as a test compound for the determination of separation efficiency and permeability. Two different sets of columns were prepared: the first one in which the amount of PEO was stepwise decreased to yield monoliths with identical macropore volumes and variations in the domain sizes. The second group of materials was synthesized adjusting both TMOS and PEO quantities to yield monolithic columns with identical macropore diameters of about 1.80 microm but different skeleton diameters and macropore volumes. The chromatographic results suggest that an increase in the column performance cannot be achieved by just arbitrarily decreasing the domain size of a given column. From a certain point of "downsizing" the monolithic structure a loss of structural homogeneity can be observed, which is apparently responsible for a lower chromatographic performance.  相似文献   

6.
A new kind of tissue engineering scaffold materials of needle-like nano-hydroxyapatite (n-HA) and polyamide (PA) biocomposite is prepared by co-solution, co-precipitation method and water treatment under normal atmospheric pressure. The n-HA crystals uniformly distribute in the composite with a crystal size of 10-20 nm in diameter by 70-90 nm in length. The n-HA/PA composite has good homogeneity, high n-HA content (65 wt%), and high bioactivity. Strong molecule interactions and chemical bondings are present between the n-HA and PA in the composite, which are verified by IR, XPS and XRD. The composite has excellent mechanical properties close to the natural bone. The porous 3-D scaffold is made by injection foaming method, which has not only macropores, but also micropores on the walls of macropores. The porosity is 80% and the average macropore diameter is about 300 μm of the composite.The n-HA/PA composite can be used for tissue engineering and bone repair or substitute.  相似文献   

7.
A template‐assisted polymer‐derived ceramic route is investigated for preparing a series of silicoboron carbonitride (Si/B/C/N) foams with a hierarchical pore size distribution and tailorable interconnected porosity. A boron‐modified polycarbosilazane was selected to impregnate monolithic silica and carbonaceous templates and form after pyrolysis and template removal Si/B/C/N foams. By changing the hard template nature and controlling the quantity of polymer to be impregnated, controlled micropore/macropore distributions with mesoscopic cell windows are generated. Specific surface areas from 29 to 239 m2 g?1 and porosities from 51 to 77 % are achieved. These foams combine a low density with a thermal insulation and a relatively good thermostructural stability. Their particular structure allowed the in situ growth of metal–organic frameworks (MOFs) directly within the open‐cell structure. MOFs offered a microporosity feature to the resulting Si/B/C/N@MOF composite foams that allowed increasing the specific surface area to provide CO2 uptake of 2.2 %.  相似文献   

8.
An ionic‐liquid‐based polymer monolithic column was synthesized by free radical polymerization within the confines of a stainless‐steel column (50 mm × 4.6 mm id). In the processes, ionic liquid and stearyl methacrylate were used as dual monomers, ethylene glycol dimethacrylate as the cross‐linking agent, and polyethylene glycol 200 and isopropanol as co‐porogens. Effects of the prepolymerization solution components on the properties of the resulting monoliths were studied in detail. Scanning electron microscopy, nitrogen adsorption–desorption measurements, and mercury intrusion porosimetry were used to investigate the morphology and pore size distribution of the prepared monoliths, which showed that the homemade ionic‐liquid‐based monolith column possessed a relatively uniform macropore structure with a total macropore specific surface area of 44.72 m2/g. Compared to a non‐ionic‐liquid‐based monolith prepared under the same conditions, the ionic‐liquid‐based monolith exhibited excellent selectivity and high performance for separating proteins from complex biosamples, such as egg white, snailase, bovine serum albumin digest solution, human plasma, etc., indicating promising applications in the fractionation and analysis of proteins from the complex biosamples in proteomics research.  相似文献   

9.
We present a two‐step template‐free approach toward monolithic materials with controlled trimodal porous structures with macro‐, meso‐, and micropores. Our method relies on two ordering processes in discrete length scales: 1) Spontaneous formation of macroporous structures in monolithic materials by the sol–gel process through the short‐range ordered self‐assembly of metal–organic frameworks (MOFs), and 2) reorganization of the framework structures in a mediator solution. The Zr‐terephthalate‐based MOF (UiO‐66‐NH2) was adopted as a proof of concept. The self‐assembly‐induced phase separation process offered interconnected macropores with diameters ranging from 0.9 to 1.8 μm. The subsequent reorganization process converted the microporous structure from low crystalline framework to crystalline UiO‐66. The resultant mesopore size within the skeletons was controlled in the range from 9 to 21 nm. This approach provides a novel way of designing spaces from nano‐ to micrometer scale in network‐forming materials.  相似文献   

10.
In this work, a parallel pore model (PPM) and a pore network model (PNM) are developed to provide a state-of-art method for the calculation of several characteristic pore structural parameters from inverse size-exclusion chromatography (ISEC) experiments. The proposed PPM and PNM could be applicable to both monoliths and columns packed with porous particles. The PPM and PNM proposed in this work are able to predict the existence of the second inflection point in the experimental exclusion curve that has been observed for monolithic materials by accounting for volume partitioning of the polymer standards in the macropores of the column. The appearance and prominence of the second inflection point in the exclusion curve is determined to depend strongly on the void fraction of the macropores (flow-through pores), (b) the nominal diameter of the macropores, and (c) the radius of gyration of the largest polymer standard employed in the determination of the experimental ISEC exclusion curve. The conditions that dictate the appearance and prominence of the second inflection point in the exclusion curve are presented. The proposed models are applied to experimentally measured ISEC exclusion curves of six silica monoliths having different macropore and mesopore diameters. The PPM and PNM proposed in this work are able to determine the void fractions of the macropores and silica skeleton, the pore connectivity of the mesopores, as well as the pore number distribution (PND) and pore volume distribution (PVD) of the mesopores. The results indicate that the mesoporous structure of all materials studied is well connected as evidenced by the similarities between the PVDs calculated with the PPM and the PNM, and by the high pore connectivity values obtained from the PNM. Due to the fact that the proposed models can predict the existence of the second inflection point in the exclusion curves, the proposed models could be more applicable than other models for ISEC characterization of chromatographic columns with small diameter macropores (interstitial pores) and/or large macropore (interstitial pore) void fractions. It should be noted that the PNM can always be applied without the use of the PPM, since the PPM is an idealization that considers an infinitely connected porous medium and for materials having a low (<6) pore connectivity the PPM would force the PVD to a lower average diameter and larger distribution width as opposed to properly accounting for the network effects present in the real porous medium.  相似文献   

11.
Polymer monolithic stationary phases are designed as a continuous interconnected globular material perfused by macropores. Like packed column, where separation efficiency is related to particle diameter, the efficiency of monoliths can be enhanced by tuning the size of both the microglobules and macropores. This protocol described the synthesis of poly(styrene-co-divinylbenzene) monolithic stationary phases in capillary column formats. Moreover, guidelines are provided to tune the macropore structure targeting high-throughput and high-resolution monolith chromatography. The versatility of these columns is exemplified by their ability to separate tryptic digests, intact proteins, and oligonucleotides under a variety of chromatographic conditions. The repeatability of the presented column fabrication process is demonstrated by the successful creation of 12 columns in three different column batches, as evidenced by the consistency of retention times (coefficients of variance [c.v.] = 0.9%), peak widths (c.v. = 4.7%), and column pressures (c.v. = 3.1%) across the batches.  相似文献   

12.
The growth of nano-sized macropores at high speed is studied in this work. Nice macropores with diameters of 60–100 nm and aspect ratio up to 2500 were formed by anodic etching on highly-doped n-type silicon without illumination. The HF-containing electrolytes were modulated with strong oxidizer, H2O2, which was also attempted by a few other researchers, but did not lead to the expected macropore formation. Our findings reveal that the pore morphology and etching speed are on dependence of HF concentration and the applied current density. The parameter window of macropore formation, corresponding to the HF concentration ranging from 33% to 67% (by volume) in our experiment, is rather large. In addition, the growth speed can be driven up to 1800 μm/h, while the pores are straight, cylindrical and rather smooth. The current-burst-model is applied to interpret the mechanism of such nano-sized macropore formation.  相似文献   

13.
与硫氧化物、氮氧化物、一氧化碳以及悬浮颗粒一样,大部分挥发性有机物(VOCs)污染大气环境.控制 VOCs排放有多种方法,其中催化氧化法是一种有效技术,关键在于获得高效催化剂.
  近年来,负载过渡金属和贵金属催化剂因具有比单纯负载贵金属和单纯负载过渡金属氧化物更好的催化性能而备受关注.在负载贵金属催化剂中,高比表面积载体负载 Pt, Pd或 Rh催化剂得到广泛而深入的研究,尽管这些催化剂成本较高,但是其对 VOCs氧化反应显示了很高的低温催化活性.众所周知,催化活性取决于贵金属和 VOCs的种类,不同负载贵金属催化剂对特定反应会表现出不同的催化活性.负载 Pt催化剂对长链碳氢化合物和芳香族化合物氧化反应表现出更高的活性.相对于负载贵金属催化剂,负载过渡金属氧化物催化剂不仅具有良好的氧化活性,而且价格低廉.迄今已发现许多过渡金属氧化物(如 Co3O4, Cr2O3和 MnO2等)对典型 VOCs氧化反应具有催化活性,其中 Co3O4的催化活性尤为突出.研究表明, Co3O4的性质和分散度是决定其性能的关键因素,制备方法、载体性质和过渡金属氧化物负载量对 Co3O4的物化性质具有重要影响,而且在负载 Pt催化剂中添加金属氧化物能改善其催化性能.尽管多孔氧化铝是一种常用的载体材料,但目前尚无文献报道三维有序大孔-介孔氧化铝负载 Co3O4和 Pt纳米粒子催化剂的制备及其对甲苯氧化反应的催化性能.
  本文采用聚甲基丙烯酸甲酯微球胶晶模板法、等体积浸渍法和聚乙烯醇保护的硼氢化钠还原法制备了三维有序大孔-介孔(3DOM Al2O3)负载 Co3O4和 Pt (xPt/yCo3O4/3DOM Al2O3, Pt的质量分数(x%)为0-1.4%, Co3O4的质量分数(y%)为0-9.2%)纳米催化剂.通过电感耦合等离子体原子发射光谱、X射线衍射、氮气吸附-脱附、扫描电子显微镜、透射电子显微镜、选区电子衍射、X射线光电子能谱及氢气程序升温还原等技术表征了催化剂的物化性质,利用固定床微型石英反应器评价了催化剂对甲苯氧化反应的催化活性.结果表明,xPt/yCo3O4/3DOMAl2O3催化剂具有多级孔结构(大孔孔径为180–200 nm,介孔孔径为4–6 nm),比表面积为94?102 m2/g.粒径为18.3 nm的 Co3O4纳米粒子和粒径为2.3?2.5 nm的 Pt纳米粒子均匀分散在3DOM Al2O3表面.在xPt/yCo3O4/3DOM Al2O3催化剂中,1.3Pt/8.9Co3O4/3DOM Al2O3拥有最高的 Oads浓度、最好的低温还原性和最高的甲苯氧化反应催化活性(当空速为20000mL g–1 h–1时,甲苯转化率达90%的反应温度为160oC).基于催化剂的活性数据和结构表征,我们认为,1.3Pt/8.9Co3O4/3DOM Al2O3优异的催化性能与其高分散的 Pt纳米粒子、高的 Oads浓度、好的低温还原性、Pt和 Co3O4纳米粒子间的强相互作用以及多级孔结构相关.  相似文献   

14.
In this work, monolithic silica columns with the C4, C8, and C18 chemistry and having various macropore diameters and two different mesopore diameters are studied to access the differences in the column efficiency under isocratic elution conditions and the resolution of selected peptide pairs under reversed-phase gradient elution conditions for the separation of peptides and proteins. The columns with the pore structural characteristics that provided the most efficient separations are then employed to optimize the conditions of a gradient separation of a model mixture of peptides and proteins based on surface chemistry, gradient time, volumetric flow rate, and acetonitrile concentration. Both the mesopore and macropore diameters of the monolithic column are decisive for the column efficiency. As the diameter of the through-pores decreases, the column efficiency increases. The large set of mesopores studied with a nominal diameter of approximately 25 nm provided the most efficient column performance. The efficiency of the monolithic silica columns increase with decreasing n-alkyl chain length in the sequence of C18相似文献   

15.
Poly(vinylidene fluoride) (PVDF) nanofibers were prepared by electrospray deposition (ESD). To control the diameter, morphology, and structure of PVDF nanofibers, some parameters were investigated, such as polymer concentration, nozzle‐to‐ground collector distance, feeding rate of the polymer solution, and applied voltage. The fabricated fiber was 80–700 nm in diameter. The increase in the polymer concentration caused an increase in the polymer viscosity and fiber diameter. At low polymer concentration (5 wt %), polymer nanoparticles were formed. An increase in applied voltage will increase the fiber diameter. Variation in the nozzle‐to‐ground collector distance did not result in significant changes in the fiber diameter. Increase in the feeding rate of the polymer solution decreased the fiber diameter. Differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD) measurements showed that the melting point and total crystallinity were decreased. Fourier transform infrared spectroscopy (FTIR) measurement revealed that ESD process induced the formation of the oriented β‐phase PVDF structures. It was also demonstrated that the addition of hydrofluorocarbon solvent to polymer solution remarkably enhanced the formation of β‐phase crystalline structure of PVDF nanofiber. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 779–786, 2006  相似文献   

16.
Thermal analysis and SEM were employed to gain insights in the different stages of morphology development and the thermal properties of polymer‐monolithic stationary phases. The studied system was a thermally initiated free‐radical copolymerization reaction at 70°C of styrene and divinylbenzene in the presence of tetrahydrofuran and 1‐decanol. The key events in the early stages of morphology development are initiation, chain growth, branching, and cyclization, leading to microgel particles. Interparticle reactions through pendant vinyl groups lead to the formation of microgel clusters. The rapid increase in molecular weight and cross‐link density of the microgel clusters causes a reaction‐induced phase separation, and the formation of a macroscopic network of interconnected globules was observed (macrogelation) at around 45 min. After 3 h or 65% conversion, a space‐filling macroporous monolithic network was observed. Afterwards, mainly growth of existing globules takes place, reducing the macropore size. The porogen ratio affects the timing of the reaction‐induced phase separation, strongly influencing the morphology of the polymer material. The use of a mixture of divinylbenzene isomers yielded a monolithic material that is less cross‐linked at the surface compared to the central part of the polymer backbone due to copolymerization‐composition drift. The less cross‐linked outer layer starts devitrifying at 100°C.  相似文献   

17.
利用相分离技术制备了非晶三维贯穿大孔氧化铝初始材料,然后通过氨水水热改性处理,使其大孔形态发生了显著改变,孔壁边缘生长有尺寸为50-300 nm的片状聚集体,大孔尺寸由430 nm下降到250 nm,但仍然保持蠕虫状三维贯穿且空间分布均匀的特性。改性后的氧化铝材料经550℃焙烧转化为高结晶度γ氧化铝,比表面积达到331 m2/g,具有8.9 nm及250 nm两种集中的孔径分布,L酸度及抗压强度均有所提高。研究表明,无定形水合羟基铝离子聚合物与氨水发生再水合反应生成薄水铝石中间物,因此,可在较低的焙烧温度下转晶为γ态;大孔孔壁边缘的AlOOH晶粒受NH4+模板诱导作用从里向外重排形成片状聚集体,从而改变了大孔的形态。  相似文献   

18.
Polymer scaffolds tailored for tissue engineering applications possessing the desired pore structure require reproducible fabrication techniques. Nondestructive, quantitative methods for pore characterization are required to determine the pore size and its distribution. In this study, a promising alternative to traditional pore size characterization techniques is presented. We introduce a quantitative, nondestructive and inexpensive method to determine the pore size distribution of large soft porous solids based on the on the displacement of a liquid, that spreads without limits though a porous medium, by nitrogen. The capillary pressure is measured and related to the pore sizes as well as the pore size distribution of the narrowest bottlenecks of the largest interconnected pores in a porous medium. The measured pore diameters correspond to the narrowest bottleneck of the largest pores connecting the bottom with the top surface of a given porous solid. The applicability and reproducibility of the breakthrough technique is demonstrated on two polyurethane foams, manufactured using the thermally induced phase separation (TIPS) process, with almost identical overall porosity (60-70%) but very different pore morphology. By selecting different quenching temperatures to induce polymer phase separation, the pore structure could be regulated while maintaining the overall porosity. Depending on the quenching temperature, the foams exhibited either longitudinally oriented tubular macropores interconnected with micropores or independent macropores connected to adjacent pores via openings in the pore walls. The pore size and its distribution obtained by the breakthrough test were in excellent agreement to conventional characterization techniques, such as scanning electron microscopy combined with image analysis, BET technique, and mercury intrusion porosimetry. This technique is suitable for the characterization of the micro- and macropore structure of soft porous solids intended for tissue engineering applications. The method is sensitive for the smallest bottlenecks of the largest continuous pores throughout the scaffold that contributes to fluid flow.  相似文献   

19.
Complex polymeric nanospheres were formed in water from comb‐like amphiphilic block copolymers. Their internal morphology was determined by three‐dimensional cryo‐electron tomographic analysis. Varying the polymer molecular weight (MW) and the hydrophilic block weight content allowed for fine control over the internal structure. Construction of a partial phase diagram allowed us to determine the criteria for the formation of bicontinuous polymer nanosphere (BPN), namely for copolymers with MW of up to 17 kDa and hydrophilic weight fractions of ≤0.25; and varying the organic solvent to water ratio used in their preparation allowed for control over nanosphere diameters from 70 to 460 nm. Significantly, altering the block copolymer hydrophilic–hydrophobic balance enabled control of the internal pore diameter of the BPNs from 10 to 19 nm.  相似文献   

20.
The structure of porous TiO2 films and TiO2:poly(N-vinylcarbazole) (PVK) composite films is investigated with time-of-flight grazing incidence small-angle neutron scattering (TOF-GISANS). The TiO2 films have been prepared by application of a sol–gel process with a diblock copolymer as structure directing agent, and the conductive polymer PVK is infiltrated in the porous network by spin coating and solution casting. The films show a hierarchical pore structure with mesopores 52 nm in size and additional large macropores with a diameter of about 180 nm. By matching the scattering contrast of the TiO2 with the polymer information about the penetration of the polymer in the pores is determined. Whereas in the PVK film prepared by solution casting the pores are filled to a high degree; in the spin coated film, PVK wets only the TiO2 pore walls and forms a solid overlying layer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1628–1635, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号