首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
C Kim  JH Bang  YE Kim  SH Lee  JY Kang 《Lab on a chip》2012,12(20):4135-4142
This paper proposes a new cytotoxicity assay in a microfluidic device with microwells and a distributive microfluidic channel network for the formation of cancer cell spheroids. The assay can generate rapid and uniform cell clusters in microwells and test in situ cytotoxicity of anticancer drugs including sequential drug treatments, long term culture of spheroids and cell viability assays. Inlet ports are connected to the microwells by a hydraulic resistance network. This uniform distribution of cell suspensions results in regular spheroid dimensions. Injected cancer cells were trapped in microwells, and aggregated into tumor spheroids within 3 days. A cytotoxicity test of the spheroids in microwells was subsequently processed in the same device without the extraction of cells. The in situ cytotoxicity assay of tumor spheroids in microwells was comparable with the MTT assay on hanging drop spheroids using a conventional 96-well plate. It was observed that the inhibition rate of the spheroids was less than that in the 2D culture dish and the effect on tumor spheroids was different depending on the anticancer drug. This device could provide a convenient in situ assay tool to assess the cytotoxicity of anticancer drugs on tumor spheroids, offering more information than the conventional 2D culture plate.  相似文献   

2.
The systemic toxicity of anticancer drugs regularly restricts the use of conventional chemotherapy to treat cancer. In this study, the limitations overcome by profitably fabricating a multifunctional nanocarrier system to carry the anticancer drug into the specific location of the cancer cells. The polyethylene glycol (PEG) was functionalized in the carboxylated multiwalled carbon nanotubes (MWCNT-COOH) through an esterification reaction (MWCNT-PEG). The targeting ligand of folic acid (FA) was covalently bonded with hyperbranched poly-L-lysine (HBPLL) using adipic acid (AA) as a cross-linking agent. Doxorubicin (DOX), an anticancer drug, was effectively loaded on MWCNT-PEG-AA-HBPLL-FA carrier loading, and in-vitro drug release was investigated by UV–Vis spectrophotometer. The chemical functionalization, morphological properties, crystalline nature, surface charge, and thermal stability of the synthesized materials were studied by FT-IR, FE-SEM, HR-TEM, DLS, and TGA techniques. In-vitro cytotoxicity and anticancer properties of DOX-loaded nanocarrier were studied in human liver cancer (HepG2) cells and human embryonic kidney (HEK293) cells. The activities of caspases (caspase ?3, ?8 & ?9) were analyzed using luminometry. The intrinsic apoptosis pathway proteins (Bcl-2 & BAX) were determined by western blot and RT-PCR analysis. The synthesized DOX-loaded nanocarriers exhibited increased cytotoxicity and apoptosis in liver HepG2 cells. The results suggest that the DOX-loaded nanocarrier possesses strong anticancer properties and could be an applicable and potential drug carrier for liver cancer chemotherapy.  相似文献   

3.
A series of bis‐acridine derivatives 3a – j and 5a – j have been synthesized by condensation of 9‐chloro‐2,4‐(un)substituted acridines (1a – e) and 9‐isothiocyanato‐2,4‐(un)substituted acridines (4a – e) with diamine 2a and 2b , respectively. These bis‐acridines were evaluated in vitro for activity against a panel of human cancer cell lines of lung (NCI H‐522), ovary (PA1), breast (T47D), colon (HCT‐15), and liver (HepG2). Several bis‐acridines were found to possess good anticancer activity against various cancer cell lines. Of these, compound 3h exhibited good anticancer activity against all cancer cell lines tested except liver (HepG2) cell line. In addition to this, these compounds were screened for anti‐inflammatory activity at a dose of 50 mg/kg p.o. Compound 3g exhibited 41% anti‐inflammatory activity, which is better than most commonly used standard drug ibuprofen, which showed 39% anti‐inflammatory (at 50 mg/kg p. o.) activity.  相似文献   

4.
Two new prodrugs, bearing two and three 5‐fluorouracil (5‐FU) units, respectively, have been synthesized and were shown to efficiently treat human breast cancer cells. In addition to 5‐FU, they were intended to form complexes through H‐bonds to an organo‐bridged silane prior to hydrolysis‐condensation through sol–gel processes to construct acid‐responsive bridged silsesquioxanes (BS). Whereas 5‐FU itself and the prodrug bearing two 5‐FU units completely leached out from the corresponding materials, the prodrug bearing three 5‐FU units was successfully maintained in the resulting BS. Solid‐state NMR (29Si and 13C) spectroscopy show that the organic fragments of the organo‐bridged silane are retained in the hybrid through covalent bonding and the 1H NMR spectroscopic analysis provides evidence for the hydrogen‐bonding interactions between the prodrug bearing three 5‐FU units and the triazine‐based hybrid matrix. The complex in the BS is not affected under neutral medium and operates under acidic conditions even under pH as high as 5 to deliver the drug as demonstrated by HPLC analysis and confirmed by FTIR and 13C NMR spectroscopic studies. Such functional BS are promising materials as carriers to avoid the side effects of the anticancer drug 5‐FU thanks to a controlled and targeted drug delivery.  相似文献   

5.
A series of novel alkyl amide functionalized trifluoromethyl substituted furo/thieno pyridine derivatives 4a–h , 5a–d , and 6a–h were prepared starting from 2‐oxo/thioxo‐6‐phenyl/thien‐2‐yl‐4‐(trifluoromethyl)‐1,2‐dihydropyridine‐3‐carbonitrile 1 on reaction with bromoethylacetate followed by reaction with different primary aliphatic amines, cyclic secondary amines, or l ‐amino acids under different set of conditions. All the synthesized compounds 4a–h , 5a–d , and 6a–h were screened for anticancer activity against four cancer cell lines such as HeLa—cervical cancer (CCL‐2), COLO205—colon cancer (CCL‐222), HepG2—liver cancer (HB‐8065), and MCF7—breast cancer (HTB‐22). Compounds 4g and 4h are found to have promising anticancer activity at micromolar concentration. CoMFA and CoMSIA methods were applied to derive 3D‐QSAR models for alkyl amide tagged furo/thieno pyridine derivatives as potential anticancer inhibitors. 3D‐QSAR models provided a strong basis for future rational design of more active and selective HeLa, COLO205, HepG2, and MCF‐7 cell line inhibitors.  相似文献   

6.
7.
Affibody‐conjugated RALA (affi‐RA) are designed for delivering oligomeric 5‐fluorodeoxyuridine (FUdR, metabolite of 5‐FU) strand to raise the selectivity of 5‐fluorouracil (5‐FU), decrease its toxicity and improve its suboptimal therapeutic efficacy. The nanodrugs, FUdR@affi‐RA, are spontaneously assembled by electrostatic interaction between positively charged affi‐RA and negatively charged FUdR15‐strands (15 consecutive FUdR). FUdR@affi‐RA exhibits excellent stability under simulated physiological conditions. Compared with free FUdR, FUdR@affi‐RA shows excellent targeting and higher cytotoxicity in human epidermal growth factor receptor 2 (HER2) overexpressing gastric cancer N87 cells. Moreover, the anticancer mechanism studies reveal that FUdR@affi‐RA enhances the expression and activity of apoptosis‐associated proteins in the Bcl‐2/Bax‐caspase 8,9‐caspase 3 apoptotic pathway induced by FUdR. This study indicates that the fusion vector, affi‐RA, presents a promising delivery system platform for nucleoside analogue drugs and provides a new strategy for the development of therapeutics of cancer treatment.  相似文献   

8.
9.
Mao S  Gao D  Liu W  Wei H  Lin JM 《Lab on a chip》2012,12(1):219-226
In this work, we developed a microfluidic device for the imitation of drug metabolism in human liver and its cytotoxicity on cells. The integrated microfluidic device consists of three sections: (1) bioreactors containing poly(ethylene) glycol (PEG) hydrogel encapsulated human liver microsomes (HLMs); (2) cell culture chambers for cytotoxicity assay; and (3) integrated micro solid-phase extraction (SPE) columns to desalt and concentrate the products of enzymatic reaction. To verify the feasibility of the integrated microchip, we studied uridine 5'-diphosphate-glucuronosyltransferase (UGT) metabolism of acetaminophen (AP) and the cytotoxicity of products on HepG2 cells. The products of the reaction in one region of the device were injected into the cell culture chamber for cytotoxicity assay, while those in another region were directly detected online with an electrospray ionization quadrupole time-of-flight mass spectrometer (ESI-Q-TOF MS) after micro-SPE pre-treatment. Semiquantitative analysis achieved in the experiments could be related to the drug-induced HepG2 cell cytotoxicity. Total analysis time for one product was about 30 min and only less than 4 μg HLM protein was required for one reaction region. The results demonstrated that the established platform could be used to imitate drug metabolism occurring in the human liver, thereby replacing animal experiments in the near future. In addition, the integrated microchip will be a useful tool for drug metabolism studies and cytotoxicity assays, which are pivotal in drug development.  相似文献   

10.
An organoiridium–albumin bioconjugate ( Ir1‐HSA ) was synthesized by reaction of a pendant maleimide ligand with human serum albumin. The phosphorescence of Ir1‐HSA was enhanced significantly compared to parent complex Ir1 . The long phosphorescence lifetime and high 1O2 quantum yield of Ir1‐HSA are highly favorable properties for photodynamic therapy. Ir1‐HSA mainly accumulated in the nucleus of living cancer cells and showed remarkable photocytotoxicity against a range of cancer cell lines and tumor spheroids (light IC50; 0.8–5 μm , photo‐cytotoxicity index PI=40–60), while remaining non‐toxic to normal cells and normal cell spheroids, even after photo‐irradiation. This nucleus‐targeting organoiridium‐albumin is a strong candidate photosensitizer for anticancer photodynamic therapy.  相似文献   

11.
The creation of effective drug delivery systems is very important in diagnosis and treatment of cancer through controlled and targeted drug delivery. They can increase bioavailability of drugs and reduce their side effects. Metal‐organic frameworks (MOFs) are alternative drug delivery systems, which are suitable for targeted drug delivery due to their adjustable pore sizes and compatibility by adding some functional groups. In this work, a new porous ZnII‐organic framework was fabricated using a tetracarboxylic acid linker 3,3′,5,5′‐azobenzene‐tetracarboxylic acid (H4abct), which reveals a 3D channel‐type framework with a high free pore volume. The performance of the solvent‐free samples was studied on absorbing and releasing 5‐fluorouracil (5‐Fu). Characterization methods, such as FT‐IR, PXRD, HPLC, BET measurement, and GCMC simulations, were employed to characterize the 5‐Fu loaded framework. Furthermore, anticancer properties of the MOF and drug‐loaded MOF were investigated against four human liver cancer cells (HepG2, SMMC‐7721, HuH‐7 and MHCC‐97H).  相似文献   

12.
A series of novel trifluoromethyl group containing pyridofuro/thieno pyrimidinone derivatives 5a–p were prepared starting from 2‐oxo/thioxo‐6‐phenyl/thien‐2‐yl‐4‐(trifluoromethyl)‐1,2‐dihydropyridine‐3‐carbonitrile 1 compound on reaction with bromoethylacetate and further different primary aliphatic amines, under their refluxing conditions to afford amide tagged furo/thieno pyridine derivatives 4 . Compound 4 on reaction with trifluoroacetic acid and obtained novel trifluoromethyl group containing pyridofuro/thieno pyrimidinone derivatives 5a–p . All the synthesized compounds 5a–p were tested for anticancer activity on four cancer cell lines such as HeLa cervical cancer (CCL‐2), COLO 205 colon cancer (CCL‐222), HepG2 liver cancer (HB‐8065), MCF7 breast cancer (HTB‐22), and one normal cell line (HEK 293); compounds 5m , 5n , and 5p are found to be more promising anticancer activity at micromolar concentration and found to be nontoxic on normal cell line.  相似文献   

13.
Cancer cells use elevated glutathione (GSH) levels as an inner line of defense to evade apoptosis and develop drug resistance. In this study, we describe a novel 2,4‐nitrobenzenesulfonyl (DNS) protected 2‐hydroxyisophthalamide system that exploits GSH for its activation into free 2‐hydroxyisophthalamide forming supramolecular M+/Cl? channels. Better permeation of the DNS protected compound into MCF‐7 cells compared to the free 2‐hydroxyisophthalamide and GSH‐activatable ion transport resulted in higher cytotoxicity, which was associated with increased oxidative stress that further reduced the intracellular GSH levels and altered mitochondrial membrane permeability leading to the induction of the intrinsic apoptosis pathway. The GSH‐activatable transport‐mediated cell death was further validated in rat insulinoma cells (INS‐1E); wherein the intracellular GSH levels showed a direct correlation to the resulting cytotoxicity. Lastly, the active compound was found to restrict the growth and proliferation of 3D spheroids of MCF‐7 cells with efficiency similar to that of the anticancer drug doxorubicin.  相似文献   

14.
Polymer‐surface decoration has been found to be an effective strategy to enhance the biological activities of nanomedicine. Herein, three different types of polymers with a cancer‐targeting ligand Arg‐Gly‐Asp peptide (RGD) have been used to decorate mesoporous silica nanoparticles (MSNs) and the functionalized nanosystems were used as drug carriers of oxaliplatin (OXA). The results showed that polymer‐surface decoration of the MSNs nanosystem by poly(ethylene glycol) (PEG) and polyethyleneimine (PEI) significantly enhanced the anticancer efficacy of OXA, which was much higher than that of chitosan (CTS). This effect was closely related to the enhancement of the cellular uptake and cellular drug retention. Moreover, PEI@MSNs‐OXA possessed excellent advantages in penetrating ability and inhibitory effects on SW480 spheroids that were used to simulate the in vivo tumor environments. Therefore, this study provides useful information for the rational design of a cancer‐targeted MSNs nanosystem with polymer‐surface decoration.  相似文献   

15.
A series of novel diethylene glycol tethered isatin‐1,2,3‐triazole‐coumarin hybrids 9a – l were designed, synthesized, and evaluated for their in vitro anticancer activities against HepG2 (liver carcinoma), Hela (cervical cancer), A549 (lung adenocarcinoma), DU145 (prostatic cancer), SKOV3 (ovarian carcinoma), MCF‐7 (breast cancer), and drug‐resistant MCF‐7/DOX (doxorubicin‐resistant MCF‐7) human cancer cell lines. The results showed that most of the synthesized hybrids exhibited considerable in vitro activities against the tested seven cancer cell lines, and these hybrids can be acted as starting points for further investigation.  相似文献   

16.
Nonmammalian cytosine deaminases (CDs) have been investigated for last 30?years in the context of cancer therapy. The therapeutic effect of CD is based on its ability to catalyze the conversion of nontoxic prodrug 5-fluorocytosine (5FC) into the anticancer drug 5-fluorouracil (5FU) by deamination of the number 4 carbon of 5FC. This deamination property of CD has been explored to develop innovative therapeutic approach for treatment of cancer. A general overview is needed for the identification of efficient cytosine deaminases for potential use in cancer therapy. In this review, we have discussed about nonmammalian CDs for a variety of prodrug gene/enzyme therapy applications with several recent examples. Finally, we have provided a prospective on the future aspects of CDs and their applications in cancer therapy.  相似文献   

17.
This study was conducted to estimate the antioxidant activities, biochemical properties and biological activities of one of the entomopathogenic fungi, Cordyceps sinensis. Analysis of fungal metabolites indicated that the most abundant free sugar was glucose; the highest component of organic acids was citric acid from 10-day culture medium and the glutamate was the predominant amino acid observed from 3-day culture medium. Maximum total polyphenols and flavonoids were detected in the 15-day culture medium. For cytotoxicity test, three cancer cell lines, HepG2 (liver), MCF-7 (breast) and A549 (lung) were used. The IC50 values of the highest toxicity of HepG2 cell lines were observed from 10-day cultured medium, whereas the highest toxicity of MCF-7 and A549 was observed on 5-day cultured medium. This is the first study reporting on the strong antioxidant and cytotoxic potential of C. sinensis. Culture medium of C. sinensis may thus be used as an effective antioxidant and anticancer treatment of natural origin.  相似文献   

18.
以甘油酸为单体,通过本体缩聚制备了水溶性生物降解高分子聚甘油酸,利用聚甘油酸侧基上的羟基固定生物相容性好的疏水性分子胆固醇,通过亲疏水作用自组装形成胶束.以形成的胶束作为载体负载抗肿瘤药物阿霉素,研究了药物的体外释放行为.将肝癌细胞HepG2与载药胶束共培养研究其体外抗肿瘤效果.研究结果表明,聚甘油酸-g-胆固醇共聚物...  相似文献   

19.
A galactose‐appended drug delivery system released camptothecin (CPT) to lysosomes of HepG2 hepatoma cells, resulting in the cell resistance to the anticancer drug. We found that the resistance to CPT is caused by alteration of the drug release from the prodrug in lysosomes, emphasizing that the final delivery locations may critically influence drug efficacy.  相似文献   

20.
Gold nanoparticles have been developed for the photoacoustic imaging, delivery of genes and laser induced photothermal therapy. In this study, we have developed oligonucleotide conjugated gold nanoparticles as the carrier for simultaneous DNA and anti‐cancer nucleoside delivery. The polynucleotidenanoparticle complex presented higher capacity in carrying 5‐FU anti‐cancer compounds than the original gold particles. The hydrodynamic size of the gold nanoparticles increased from 25 to 35 nm with an increase in the negative surface charge from ?9.58 to 21.66 mV after polynucleotide conjugation and drug loading. A positive association between environmental pH and drug release was observed in PBS, which implied their potential use in the controlled localized drug release in the lower GI tract. The MTT assay revealed dose dependent cytotoxicity to colon cancer cell line than free compounds. These results suggest the potential use of this new polynucleotide‐gold nanoparticles complex as the environmental controlled anti‐cancer nanocapsule, especially suitable for per oral colon cancer chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号