首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The copolymerization of ethylene with polar vinyl monomers, such as vinyl acetate, acrylonitrile, vinyl ethers, and allyl monomers, was accomplished using cationic palladium complexes ligated by a bisphosphine monoxide (BPMO). The copolymers formed by these catalysts have highly linear microstructures and a random distribution of polar functional groups throughout the polymer chain. Our data demonstrate that cationic palladium complexes can exhibit good activity for polymerizations of polar monomers, in contrast to cationic α-diimine palladium complexes (Brookhart-type) that are not applicable to industrially relevant polar monomers beyond acrylates. Additionally, the studies reported here point out that phosphine-sulfonate ligated palladium complexes are no longer the singular family of catalysts that can promote the reaction of ethylene with many polar vinyl monomers to form linear functional polyolefins.  相似文献   

2.
新一代高活性后过渡金属烯烃聚合催化剂   总被引:1,自引:0,他引:1  
介绍了近几年发展起来的新一代后期过渡金属(Fe,Co,Ni,Pd)烯烃聚合催化剂,对催化剂的结构、性能及催化烯烃聚合进行了阐述。  相似文献   

3.
The replacement of precious metals in catalysis by earth‐abundant metals is currently one of the urgent challenges for chemists. Whereas palladium‐catalyzed copolymerization of ethylene and polar monomers is a valuable method for the straightforward synthesis of functionalized polyolefins, the corresponding nickel‐based catalysts have suffered from poor thermal tolerance and low molecular weight of the polymers formed. Herein, we report a series of neutral nickel complexes bearing imidazo[1,5‐a]quinolin‐9‐olate‐1‐ylidene (IzQO) ligands. The Ni/IzQO system can catalyze ethylene polymerization at 50–100 °C with reasonable activity in the absence of any cocatalyst, whereas most known nickel‐based catalysts are deactivated at this temperature range. The Ni/IzQO catalyst was successfully applied to the copolymerization of ethylene with allyl monomers to obtain the corresponding copolymers with the highest molecular weight reported for a Ni‐catalyzed system.  相似文献   

4.
The transition‐metal‐catalyzed copolymerization of olefins with polar functionalized co‐monomers represents a major challenge in the field of olefin polymerization. It is extremely difficult to simultaneously achieve improvements in catalytic activity, polar monomer incorporation, and copolymer molecular weight through ligand modifications. Herein we introduce a polyethylene glycol unit to some phosphine‐sulfonate palladium and nickel catalysts, and its influence on ethylene polymerization and copolymerization is investigated. In ethylene polymerization, this strategy leads to enhanced activity, catalyst stability, and increased polyethylene molecular weight. In ethylene copolymerization with polar monomers, improvements in all copolymerization parameters are realized. This effect is most significant for polar monomers with hydrogen‐bond‐donating abilities.  相似文献   

5.
The ability to carry out transition‐metal‐catalyzed copolymerizations of olefins with polar monomers is a great challenge in the field of olefin polymerization. Palladium has been the dominant player in this field, while its low‐cost nickel counterpart has only achieved very limited success. We report the synthesis and evaluation of a highly versatile platform based on diphosphazane monoxide ligands. Both palladium and nickel catalysts bearing these ligands mediate the copolymerization of ethylene with a number of fundamental polar monomers.  相似文献   

6.
The covalently immobilized multiwalled carbon nanotubes (MWNTs) supported three‐dimensional geometry α‐diimine nickel, palladium catalysts are prepared by corresponding α‐diimine nickel, palladium complexes and activated MWNTs. The molecular structures of the catalysts have been confirmed by X‐ray single‐crystal analyses, NMR and XPS, as well as elemental analysis. Compared with nickel, palladium catalysts without modification and physical mixing of nickel, palladium catalysts with MWNTs, the MWNTs supported nickel, palladium catalysts show improved activity and productivity in norbornene homopolymerization and copolymerization with polar monomer. The morphology of the resulting polymers obtained from MWNTs‐supported nickel(II) complex reveals that the MWNTs are dispersed uniformly in polymer and wrapped by polymers to squeeze out of spherical particles, leading to the enhanced processability and mechanical properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3213–3220  相似文献   

7.
Transition‐metal‐catalyzed copolymerization reactions of olefins with polar‐functionalized comonomers are highly important and also highly challenging. A second‐coordination‐sphere strategy was developed to address some of the difficulties encountered in these copolymerization reactions. A series of α‐diimine ligands bearing nitrogen‐containing second coordination spheres were prepared and characterized. The properties of the corresponding nickel and palladium catalysts in ethylene polymerizations and copolymerizations were investigated. In the nickel system, significant reduction in polymer branching density was observed, while lower polymer branching densities, as well as a wider range of polar monomer substrates, were achieved in the palladium system. Control experiments and computational results reveal the critical role of the metal−nitrogen interaction in these polymerization and copolymerization reactions.  相似文献   

8.
A comparison of BF3 ·Bu2O and Cl-N2PF6 as catalysts for cationic homopolymerization and copolymerization of trioxane has been made by employing high resolution nuclear magnetic resonance techniques. While no substantial difference was detected for the homopolymerization, two important differences were observed for the copolymerization with ethylene oxide; viz., 1) with Cl-NPF6 there is a lower build-up of formaldehyde concentration; 2) with Cl[sbnd]N2PF6, a lesser amount of cyclic compounds containing ethylene oxide units is formed (e.g., 1,3-dioxolane). Both observations suggest that depolymerization occurs to a lesser extent with the cl-N2PF6 catalyst.  相似文献   

9.
Summary: By a sidearm approach, a series of titanium complexes bearing an [O, N, S] tridentate ligand have been synthesized and proven to be highly active for ethylene polymerization. The complexes also show excellent ability to copolymerize ethylene with hex‐1‐ene and norbornene. The effects of the different sidearms on the catalytic behavior of the complexes were studied in detail.

The copolymerization of ethylene with hex‐1‐ene using titanium complexes bearing [O, N, S] tridentate ligands as catalysts.  相似文献   


10.
Recent advances in transition metal catalyzed olefin polymerization and melt processing stimulate the production of new polymers derived from old monomers. Modern polyolefin processes do not require polymer purification and give excellent control of molecular and supermolecular polyolefin architectures. Progress in catalyst design and preparation of tailor-made homo-and copolymers is highlighted for isotactic, syndiotactic, atactic and stereo-block polypropylene (PP), novel 1-olefin copolymers, and ethylene copolymers with polar monomers, e.g., CO and acrylics. Today polyethylene short-and long-chain-branching is controlled either by uniform ethylene copolymerization with 1-olefins using single-site” metallocene catalysts, or by migratory polyinsertion of ethylene, respectively. Stiff cycloaliphatic polymers expand the frontiers of polyolefins into engineering applications. New families of polyethylenes and EPM with pendent polypropylene chains are obtained via copolymerization of PP macromonomers or polymer-analoguous coupling of functionalized PP during melt processing.  相似文献   

11.
A series of palladium complexes ( 2a–2g ) ( 2a : [6‐tBu‐2‐PPh2‐C6H3O]PdMe(Py); 2b : [6‐C6F5–2‐PPh2‐C6H3O]PdMe(Py); 2c : [6‐tBu‐2‐PPhtBu‐C6H3O]PdMe(Py); 2d : [2‐PPhtBu‐C6H4O] PdMe(Py); 2e : [6‐SiMe3–2‐PPh2‐C6H3O]PdMe(Py); 2f : [2‐tBu‐6‐(Ph2P=O)‐C6H3O]PdMe(Py); 2g : [6‐SiMe3–2‐(Ph2P=O)‐C6H3S]PdMe(Py)) bearing phosphine (oxide)‐(thio) phenolate ligand have been efficiently synthesized and characterized. The solid‐state structures of complexes 2d , 2f and 2g have been further confirmed by single‐crystal X‐ray diffraction, which revealed a square‐planar geometry of palladium center. In the presence of B(C6F5)3, these complexes can be used as catalysts to polymerize norbornene (NB) with relatively high yields, producing vinyl‐addition polymers. Interestingly, 2a /B(C6F5)3 system catalyzed the polymerization of NB in living polymerization manner at high temperature (polydispersity index 1.07, Mn up to 1.5 × 104). The co‐polymerization of NB and polar monomers was also studied using catalysts 2a and 2f . All the obtained co‐polymers could dissolve in common solvent.  相似文献   

12.
Transition metal catalyzed ethylene copolymerization with polar monomers is a highly challenging reaction. After decades of research, the scope of suitable comonomer substrates has expanded from special to fundamental polar monomers and, recently, to 1,1‐disubstituted ethylenes. Described in this contribution is a direct and tandem strategy to realize ethylene copolymerization with various 1,2‐disubstituted ethylenes. The direct route is sensitive to sterics of both the comonomers and the catalyst. In the tandem route, ruthenium‐catalyzed ethenolysis can convert 1,2‐disubstituted ethylenes into terminal olefins, which can be subsequently copolymerized with ethylene to afford polar functionalized polyolefins. The one‐pot, two‐step tandem route is highly versatile and efficient in dealing with challenging substrates. This work is a step forward in terms of expanding the substrate scope for transition metal catalyzed ethylene copolymerization with polar‐functionalized comonomers.  相似文献   

13.
运用密度泛函方法对含酚-膦配体的半茂钛化合物催化乙烯与降冰片烯共聚合反应的详细机理进行了理论研究。计算结果表明,虽然由于配体的不同,此系列钛化合物具有两种典型结构,但其在助催化剂作用下形成的催化活性种均为相似的P-Ti成键的阳离子物种。在烯烃聚合反应中,烯烃单体的配位插入反应易于从阳离子活性种中氧原子的对位发生。由乙烯及降冰片烯聚合反应各步骤的比较可知,乙烯单体插入Ti-Me结构的初始插入步骤较插入Ti-Et结构困难得多,因而链引发步骤为乙烯均聚的决速步骤。而降冰片烯单体插入Ti-Me结构较之乙烯单体容易得多,但由于降冰片烯单体位阻较大,其连续插入十分困难。在共聚反应过程中,NBE单体的引入可以使得Et插入反应容易越过较难的插入Ti-Me结构步骤,这是NBE与Et共聚反应的反应活性远大于催化Et均聚反应的最主要原因。  相似文献   

14.
The present work discusses the synthesis of well-defined comb-shaped polymers or graft copolymer structures based on coordination (co)polymerization of macromonomers. Polystyrene macromonomers with various polymerizable entities were synthesized first by induced deactivation reactions. The homopolymerization of these macromonomers in the presence of selected early or late transition metal catalysts was examined. Comb-shaped polymers could be obtained over a large range of DP values. The results were compared to those obtained by anionic homopolymerization. Some results on the copolymerization of these PS macromonomers with ethylene in the presence of VERSIPOLTM type catalysts were presented.  相似文献   

15.
A neutral nickel (Ⅱ) catalyst D, { [O-(3-cyclohexyl)(5-Cl)C6H2-ortho-C(H)=N-2,6-C6H3(i-Pr)2]Ni(Ph3P)(Ph)} has been synthesized and characterized by 1H-NMR, FTIR and elemental analysis. The results indicate that Al(i-Bu)3 is an effective cocatalyst for the neutral nickel catalyst. With bis(1,5-cyclooctadiene) nickel(0) [Ni(COD)2] or Al(i-Bu)3 as a cocatalyst, the neutral nickel catalyst D is active for ethylene polymerisation and copolymerisation with polar monomers (tertbutyl 10-undecenoate(BU), methyl 10-undecenoate (MU), allyl alcohol (AA) and 4-penten-1-ol (PO)) under mild conditions.The resulting polymers were characterized by 1H-NMR, FTIR, DSC, and GPC. From the comparative studies, Ni(COD)2 is more active than Al(i-Bu)3 for ethylene homopolymerization, while Al(i-Bu)3 is more effective than Ni(COD)2 for ethylene copolymerisation with polar monomers. The polymerization parameters which affect both the catalytic activity and properties of the resulting polyethylene were investigated in detail. Under the conditions of 20 μmol catalyst D and Ni(COD)2/D = 3(molar ratio) in 30 mL toluene solution at 45℃, 12 × 105 Pa ethylene for 20 min, the polymerization activity reaches as High as7.29×105gPE.(mol.Ni·h)-1and Mηis 7.16×104g.mol-1.For ethylene copolymerization with polar monomers,the effect of comonomer concentrations was examined. As high as 0.97 mol% of MU, 1.06 mol% of BU, 1.04 mol% of AA and 1.37 mol% of PO were incorporated into the polymer, respectively, catalyzed by D/Al(i-Bu)3 system.  相似文献   

16.
Bulk homopolymerization and copolymerization of 1‐hexene (H) with polar monomers including butyl acrylate (B) and methyl methacrylate (M) in the presence of 1,4‐bis (2,6‐diisopropylphenyl) acenaphthene diimine nickel (II) dibromide catalyst were investigated. Two cocatalysts, including diethyl aluminium chloride (DEAC) and ethyl aluminium sesqui chloride (EASC), were used to activate the catalyst at ambient temperature. In both the homopolymerization and copolymerization of 1‐hexene with polar monomers, the catalyst activity resulted from EASC as cocatalyst was higher than that resulted from DEAC. 1HNMR analysis was used in order to determine incorporation level of polar monomers and branching density of the synthesized polymers. A highest incorporation level of 13.3% mol was obtained using monomer B in the presence of the cocatalyst EASC. In addition, the influence of polar monomers on molecular weight and molecular weight distribution (PDI) was studied for both the homo‐ and co‐polymerizations of 1‐hexene in the presence of various cocatalysts. A higher molecular weight and narrower PDI were obtained by using the DEAC cocatalyst compared to the EASC cocatalyst. Glass transition temperature (Tg) and melting point (Tm) of the synthesized polymers were found to be dependent on the cocatalyst type and comonomer incorporation level. The addition of dichloromethane solvent into reaction medium showed a positive effect on comonomer incorporation which could not be seen in bulk polymerization. However, the presence of dichloromethane led to decrease the catalyst activity and molecular weight of the polymers.  相似文献   

17.
A series of vanadium(V) complexes bearing tetradentate amine trihydroxy ligands [NOOO], which differ in the steric and electronic properties, have been synthesized and characterized. Single crystal X‐ray analysis showed that these complexes are five or six coordinated around the vanadium center in the solid state. Their coordination geometries are octahedral or trigonal bipyramidal. In the presence of Et2AlCl, these complexes have been investigated as the efficient catalysts for ethylene polymerization and ethylene/norbornene copolymerization at elevated reaction temperature and produced the polymers with unimodal molecular weight distributions (MWDs), indicating the single site behaviors of these catalysts. Both the steric hindrance and electronic effect of the groups on the tetradentate ligands directly influenced catalytic activity and the molecular weights of the resultant (co)polymers. Other reaction parameters that influenced the polymerization behavior, such as reaction temperature, ethylene pressure, and comonomer concentration, are also examined in detail. Furthermore, high catalytic activities of up to 3.30 kg polymer/mmolV·h were also observed when these complexes were applied to catalyze the copolymerization of ethylene and 5‐norbornene‐2‐methanol, producing the high‐molecular‐weight copolymers (Mw = 157–400 kg/mol) with unimodal MWDs (Mw/Mn = 2.5–3.0) and high polar comonomer incorporations (up to 12.3 mol %). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1122–1132, 2010  相似文献   

18.
The facile and reversible interconversion between neutral and oxidized forms of palladium complexes containing ferrocene‐bridged phosphine sulfonate ligands was demonstrated. The activity of these palladium complexes could be controlled using redox reagents during ethylene homopolymerization, ethylene/methyl acrylate copolymerization, and norbornene oligomerization. Specifically in norbornene oligomerization, the neutral complexes were not active at all whereas the oxidized counterparts showed appreciable activity. In situ switching between the neutral and oxidized forms resulted in an interesting “off” and “on” behavior in norbornene oligomerization. This work provides a new strategy to control the olefin polymerization process.  相似文献   

19.
Transition‐metal‐catalyzed copolymerization of olefins with polar monomers represents a challenge because of the large variety of substrate‐induced side reactions. However, this approach also holds the potential for the direct synthesis of polar functionalized polyolefins with unique properties. After decades of research, only a few catalyst systems have been found to be suitable for this reaction. Some major advances in catalyst development have been made in the past five years. This Minireview summarizes some of the recent progress in the extensively studied Brookhart and Drent catalyst systems, as well as emerging alternative palladium and nickel catalysts.  相似文献   

20.
Moderately isospecific homopolymerization of propylene and the copolymerization of propylene and polar monomers have been achieved with palladium complexes bearing a phosphine‐sulfonate ligand. Optimization of substituents on the phosphorus atom of the ligand revealed that the presence of bulky alkyl groups (e.g. menthyl) is crucial for the generation of high‐molecular‐weight polypropylenes (Mw≈104), and the substituent at the ortho‐position relative to the sulfonate group influences the molecular weight and isotactic regularity of the obtained polypropylenes. Statistical analysis suggested that the introduction of substituents at the ortho‐position relative to the sulfonate group favors enantiomorphic site control over chain end control in the chain propagation step. The triad isotacticity could be increased to mm=0.55–0.59, with formation of crystalline polar polypropylenes, as supported by the presence of melting points and sharp peaks in the corresponding X‐ray diffraction patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号