首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The asymmetric unit in the structure of the title compound, [K2(C9H4O9S)(H2O)2]n, consists of two eight‐coordinated KI cations, one 2,4‐dicarboxy‐5‐sulfonatobenzoate dianion (H2SBTC2−), one bridging water molecule and one terminal coordinated water molecule. One KI cation is coordinated by three carboxylate O atoms and three sulfonate O atoms from four H2SBTC2− ligands and by two bridging water molecules. The second KI cation is coordinated by four sulfonate O atoms and three carboxylate O atoms from five H2SBTC2− ligands and by one terminal coordinated water molecule. The KI cations are linked by sulfonate groups to give a one‐dimensional inorganic chain with cage‐like K4(SO3)2 repeat units. These one‐dimensional chains are bridged by one of the carboxylic acid groups of the H2SBTC2− ligand to form a two‐dimensional layer, and these layers are further linked by the remaining carboxylate groups and the benzene rings of the H2SBTC2− ligands to generate a three‐dimensional framework. The compound displays a photoluminescent emission at 460 nm upon excitation at 358 nm. In addition, the thermal stability of the title compound has been studied.  相似文献   

2.
On the line of a previous work on the spectral properties of some of heteroaryl chalcone, the effect of medium acidity and photoreactivity of 3‐(4‐dimethylamino‐phenyl)‐1‐(2,5‐dimethyl‐thiophen‐3‐yl)‐propenone (DDTP) has been investigated in dimethylformamide and in chloromethane solvents such as methylenechloride, chloroform and carbon tetrachloride. The dye solution (ca. 5×10−4 mol·L−1 in DMF) gives a good laser emission in the range 470–560 nm with emission maximum at 515 nm upon pumping by nitrogen laser (λex=337.1 nm). The laser parameters such as gain coefficient (α), emission cross section (δe) and half life energy (E1/2) at maximum laser emission are also determined.  相似文献   

3.
In the title compound, {[Zn(C19H17N5O2)2(H2O)2](NO3)2}n, the ZnII cation is located at an inversion centre within a slightly distorted octahedron, ligated by four N atoms from four N2,N6‐bis[(pyridin‐3‐yl)methyl]pyridine‐2,6‐dicarboxamide (L) ligands occupying a plane about the ZnII atom with the two water O atoms perpendicular to that. In the complex molecule, the bidentate bridging L ligands display helical R and S conformers, and link the ZnII cations into a one‐dimensional centrosymmetric double‐chain structure containing 32‐membered rings. The nitrate anions reside in these rings and are involved in multiple N—H...O hydrogen‐bond interactions. On excitation at 390 nm, the title compound displays a strong blue emission centred at 449 nm. Investigation of the thermal stability shows that the network structure is stable up to 420 K.  相似文献   

4.
The title complex, {[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O}n, was synthesized by the reaction of nickel chloride, 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (HL) and 4,4′‐bipyridine (bpy) under hydrothermal conditions. The asymmetric unit contains two half NiII ions, each located on an inversion centre, two L ligands, one bpy ligand, two coordinated water molecules and one unligated water molecule. Each NiII centre is six‐coordinated by two monodentate carboxylate O atoms from two different L ligands, two pyridine N atoms from two different bpy ligands and two terminal water molecules, displaying a nearly ideal octahedral geometry. The NiII ions are bridged by 4,4′‐bipyridine ligands to afford a linear array, with an Ni...Ni separation of 11.361 (1) Å, which is further decorated by two monodentate L ligands trans to each other, resulting in a one‐dimensional fishbone‐like chain structure. These one‐dimensional fishbone‐like chains are further linked by O—H...O, O—H...N and C—H...O hydrogen bonds and π–π stacking interactions to form a three‐dimensional supramolecular architecture. The thermal stability of the title complex was investigated via thermogravimetric analysis.  相似文献   

5.
In the title compound, {[Tb(C12H8NO2)3(H2O)2]·H2O}n, the TbIII cation is in an eight‐coordinate environment, ligated by six carboxylate O atoms from five 3‐(pyridin‐4‐yl)benzoate (L) ligands and by two O atoms from water molecules. The cations are bridged by the carboxylate O atoms of the L ligands to form a two‐stranded polymeric chain which is assembled into a three‐dimensional supramolecular network through regular interchain O—H...N hydrogen bonding. On excitation at 320 nm, the title compound displays a series of emissions, which were assigned to the characteristic electronic transitions of TbIII.  相似文献   

6.
The title CdII compound, {[Cd2(C13H7NO4)2(H2O)4]·5H2O}n, was synthesized by the hydrothermal reaction of Cd(NO3)2·4H2O and 5‐(pyridin‐4‐yl)isophthalic acid (H2L). The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated L2− ligands, four coordinated water molecules and five isolated water molecules. One of the CdII cations adopts a six‐coordinate octahedral coordination geometry involving three O atoms from one bidentate chelating and one monodentate carboxylate group of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. The second CdII cation adopts a seven‐coordinate pentagonal–bipyramidal coordination geometry involving four O atoms from two bidentate chelating carboxylate groups of two different L2− ligands, one N atom of another L2− ligand and two coordinated water molecules. Each L2− ligand bridges three CdII cations and, likewise, each CdII cation connects to three L2− ligands, giving rise to a two‐dimensional graphite‐like 63 layer structure. These two‐dimensional layers are further linked by O—H...O hydrogen‐bonding interactions to form a three‐dimensional supramolecular architecture. The photoluminescence properties of the title compound were also investigated.  相似文献   

7.
In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnII cation, two halves of 2,2′‐(diazene‐1,2‐diyl)dibenzoate anions (denoted L2−) and half of a 1,2‐bis(pyridin‐4‐yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnII centre is four‐coordinated by three O atoms of bridging carboxylate groups from three L2− ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnII atoms are bridged by two carboxylate groups of L2− ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodes via the sharing of four L2− ligands to form a two‐dimensional [Zn2L4]n net. These nets are separated by bpe ligands acting as spacers, producing a three‐dimensional framework with a 4664 topology. Powder X‐ray diffraction and solid‐state photoluminescence were also measured.  相似文献   

8.
The synthesis is reported of the tricarboxylic acid 3‐(3,5‐dicarboxybenzyloxy)benzoic acid (H3L) and the product of its reaction under solvothermal conditions with ZnII cations, namely poly[[μ6‐3‐(3,5‐dicarboxylatobenzyloxy)benzoato](dimethylformamide)‐μ3‐hydroxido‐dizinc(II)], [Zn2(C16H9O7)(OH)(C3H7NO)]n, the formation of which is associated with complete deprotonation of H3L. Its crystal structure consists of a single‐framework coordination polymer of the organic L3− ligand with ZnII cations in a 1:2 ratio, with additional hydroxide and dimethylformamide (DMF) ligands coordinated to the ZnII centres. The ZnII cations are characterized by coordination numbers of 5 and 6, being bridged to each other by hydroxide ligands. In the polymeric framework, the carboxylate‐ and hydroxy‐bridged ZnII cations are arranged in coordination‐tessellated columns, which propagate along the a axis of the crystal structure, and each L3− ligand links to seven different ZnII centres via Zn—O bonds of two different columns. The coordination framework, composed of [Zn2(L)(OH)(DMF)]n units, forms an open architecture, the channel voids within it being filled by the zinc‐coordinating DMF ligands. This report provides the first structural evidence for the formation of coordination polymers with H3L via multiple metal–ligand bonds through its carboxylate groups.<!?tpb=21.5pt>  相似文献   

9.
Two complexes based on the ligand 1,4‐dihydro‐2,3‐quinoxalinedione, namely [Mn(H2L)2(H2O)2]n ( 1 ) and {[Zn2(H2L)2(tz)2] · 5H2O}n ( 2 ) (H3L = 2,3‐dioxo‐1,2,3,4‐tetrahydroquinoxaline‐6‐carboxylic acid, Htz = 1,2,4‐triazole) were hydrothermally synthesized and characterized by elemental analyses, IR spectroscopy, as well as single‐crystal and powder X‐ray diffraction. Complex 1 exhibited a 1D comb‐like chain formed by H2L anions linking MnII ions, whereas complex 2 was a 2D layer‐like structure with square‐shaped windows and outstretched arms built by combination of H2L and tz ligands with ZnII ions. The adjacent chains or layers connected with each other by intermolecular hydrogen bonding and π–π stacking to further extend to a 3D supermolecular framework. In addition, the thermal stabilities, luminescence properties, and optical energy gap of 1 and 2 were investigated in detail.  相似文献   

10.
The asymmetric unit of the title compound, [Pb2(C8H4O4)2(C18H11N5)2]n, contains two PbII atoms, two benzene‐1,4‐dicarboxylate (1,4‐bdc) dianions and two 6‐(4‐pyridyl)‐5H‐imidazolo[4,5‐f][1,10]phenanthroline (L) ligands. Each PbII atom is eight‐coordinated by three N atoms from two different L ligands and five carboxylate O atoms from three different 1,4‐bdc dianions. The two 1,4‐bdc dianions (1,4‐bdc1 and 1,4‐bdc2) show different coordination modes. Each 1,4‐bdc1 coordinates to two PbII atoms in a chelating bis‐bidentate mode. Each carboxylate group of the 1,4‐bdc2 anion connects two PbII atoms in a chelating–bridging tridentate mode to form a dinuclear unit. Neighbouring dinuclear units are connected together by the aromatic backbone of the 1,4‐bdc dianions and the L ligands into a three‐dimensional six‐connected α‐polonium framework. The most striking feature is that two identical three‐dimensional single α‐polonium nets are interlocked with each other, thus leading directly to the formation of a twofold interpenetrated three‐dimensional α‐polonium architecture. The framework is held together in part by strong N—H...O hydrogen bonds between the imidazole NH groups of the L ligands and the carboxylate O atoms of 1,4‐bdc dianions within different α‐polonium nets.  相似文献   

11.
Four metal‐organic frameworks (MOFs), {[Mn3.5L(OH)(HCOO)4(DMF)] · H2O} ( 1 ), {[In2.5L2O(OH)1.5(H2O)2] · DMF · CH3CN · 2H2O} ( 2 ), {[Pb4L3O(DMA)] · CH3CN} ( 3 ), and {[LaL(NO3)(DMF)2] · 2H2O} ( 4 ) were synthesized by utilizing the ligand 2,2′,6,6′‐tetramethoxy‐4,4′‐biphenyldicarboxylic acid (H2L) via solvothermal methods. All MOFs were characterized by single‐crystal X‐ray diffraction, powder X‐ray diffraction, thermogravimetric analysis, and infrared spectroscopy. In 1 , the Mn2+ ions are interconnected by formic groups in situ produced via DMF decomposition to form a rare 2D macrocyclic plane, which is further linked by L2– to construct the final 3D network. In 2 , 1D zip‐like infinite chain is formed and then interconnected to build the 3D framework. In 3 , a [Pb64‐O)2(O2C)10(DMA)2] cluster with a centrosymmetric [Pb64‐O)2]8+ octahedral core is formed in the 3D structure. In 4 , the La3+ ions are connected with each other through carboxylate groups of L2– to generate 1D zigzag chain, which is further linked by L2– to construct a 3D network with sra topology. Solid photoluminescence properties of 3 and 4 were also investigated.  相似文献   

12.
In the title PbII coordination polymer, [Pb(C16H10O4)(C14H8N4)(C3H7NO)]n, each PbII atom is eight‐coordinated by two chelating N atoms from one pyrazino[2,3‐f][1,10]phenanthroline (L) ligand, one dimethylformamide (DMF) O atom and five carboxylate O atoms from three different 4,4′‐ethylenedibenzoate (eedb) ligands. The eedb dianions bridge neighbouring PbII centres through four typical Pb—O bonds and one longer Pb—O interaction to form a two‐dimensional structure. The C atoms from the L and eedb ligands form C—H...O hydrogen bonds with the O atoms of eedb and DMF ligands, which further stabilize the structure. The title compound is the first PbII coordination polymer incorporating the L ligand.  相似文献   

13.
The title compound, [Cd(NCS)2(C13H10N4OS)2]n, contains SCN anions acting as end‐to‐end bridging ligands which utilize both S and N atoms to link cadmium(II) centers into one‐dimensional double chains. The multidentate 5‐(4‐pyridyl)‐2‐(2‐pyridylmethylsulfanyl)‐1,3,4‐oxadiazole ligands behave as monodentate terminal ligands, binding metal centers only through the N atoms of the 4‐pyridyl groups. Two types of eight‐membered rings are formed by two SCN anions bridging CdII centers, viz. planar and chair conformation, which are alternately disposed along the same chain. Finally, chains define a two‐dimensional array through two different interchain π–π stacking interactions.  相似文献   

14.
The zinc(II) coordination polymer Zn2(L)2(bix)2 · 2H2O ( 1 ) [H2L = 4,4′‐methylenebis(oxy)dibenzoic acid, bix = 1,4‐bis(imidazole‐1‐yl‐methylene)‐benzene] was synthesized by hydrothermal reaction. The title compound was characterized by single‐crystal X‐ray diffraction analysis, IR spectroscopy, and elemental analysis. The crystal structure determination reveals that compound 1 displays a twofold interpenetrated 3D framework, in which the Zn atoms are connected by the H2L ligands into interesting right and left‐handed helical chains. Topological analysis reveals that the title compound displays a (3,4)‐connected (63) (65 · 8) topology. The solid‐state luminescent spectra was studied. Furthermore, the dispersed solution of compound 1 in DMF exhibits strong fluorescent emission, which could be quenched by trace amount of nitrobenzene.  相似文献   

15.
In the title compound, [La2(C8H4O4)2(C6H4NO2)2]n, there are two crystallographically independent La centres, both nine‐coordinated in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom. The La centres are linked by the carboxylate groups of isonicotinate (IN) and benzene‐1,2‐dicarboxylate (BDC2−) ligands to form La–carboxylate chains, which are further expanded into a three‐dimensional framework with nanometre‐sized channels by La—N bonds. In the construction of the resultant architecture, in tricapped trigonal prismatic coordination geometries by eight carboxylate O atoms and one pyridyl N atom, while the BDC ligands link to four different cations each, displaying penta‐ and heptadentate chelating–bridging modes, respectively.  相似文献   

16.
The three‐dimensional (3D) samarium phosphonate framework [Sm2(H2L)3]n · 5n(H2O) ( 1 ) [H4L = N,N′‐piperazine‐bis(methylenephosphonic acid)] was synthesized by hydrothermal reaction of Sm2O3 with N,N′‐piperazine‐bis(methylenephosphonic acid) hydrochloride in the presence of glutaric acid. Single‐crystal X‐ray diffraction analysis reveals that it has a 3D open framework structure with helical channels along the crystallographic c axis. The channels are filled up by discrete pentameric water clusters, which are hydrogen‐bonded to the host. Compound 1 displays two interesting structural features: (a) two of three H2L2– ligands adopt the less stable a,e‐cis conformation; (b) both of the SmIII ions exhibit rather unusual octahedral coordination arrangements. In addition, the photoluminescent property was investigated.  相似文献   

17.
Photocatalysis is a green technology for the treatment of all kinds of contaminants and has advantages over other treatment methods. Recently, much effort has been devoted to developing new photocatalytic materials based on metal–organic frameworks for use in the degradation of many kinds of organic contaminants. With the aim of searching for more effective photocatalysts, the title three‐dimensional coordination polymer, [Cd2(C8H4O4)2(C18H16N2O2)]n, was prepared. The asymmetric unit contains one CdII cation, one benzene‐1,2‐dicarboxylate anion (denoted L2−) and half of a centrosymmetric 1,4‐bis(pyridin‐3‐ylmethoxy)benzene ligand (denoted bpmb). Each CdII centre is five‐coordinated by four carboxylate O atoms from two L2− ligands and by one N atom from a bpmb ligand, forming a disordered pentagonal pyramidal coordination geometry. The CdII centres are interlinked by L2− ligands to form a one‐dimensional [Cd2L2]n chain. Adjacent chains are further connected by bpmb linkers, giving rise to a two‐dimensional network, and these networks are pillared by bpmb to afford a three‐dimensional framework with a 33.42.63.71.81 topology. Each grid in the framework has large channels which are filled mainly by the two other equivalent frameworks to form a threefold interpenetrating net. The compound exhibits relatively good photocatalytic activity towards the degradation of methylene blue in aqueous solution under UV irradiation.  相似文献   

18.
The title compound, [Ag(C15H11N4O2S)]n, was synthesized by the reaction of 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (Hptmba) with silver nitrate and triethylamine at room temperature. The asymmetric unit contains one crystallographically independent AgI cation and one ptmba ligand. Each AgI cation is tricoordinated by two carboxylate O atoms and one tetrazole N atom from three different ptmba ligands, displaying a distorted T‐shaped geometry. Three AgI cations are linked by tris‐monodentate bridging ptmba ligands to form a one‐dimensional double chain along the c axis, which is further consolidated by an intrachain π–π contact with an offset face‐to‐face distance of 4.176 (3) Å between the centroids of two adjacent aromatic rings in neighbouring benzoate groups. The one‐dimensional chains are linked into a three‐dimensional supramolecular framework by additional π–π interchain interactions, viz. of 3.753 (3) Å between two phenyl substituents of the tetrazole rings and of 4.326 (2) Å between a benzoate ring and a tetrazole ring. Thermogravimetric analysis and the fluorescence spectrum of the title compound reveal its good thermal stability and a strong green luminescence at room temperature.  相似文献   

19.
The synthesis and crystal structure (at 100 K) of the title compound, Cs[Fe(C11H13N3O2S2)2]·CH3OH, is reported. The asymmetric unit consists of an octahedral [FeIII(L)2] fragment, where L2− is 3‐ethoxysalicylaldehyde 4‐methylthiosemicarbazonate(2−) {systematic name: [2‐(3‐ethoxy‐2‐oxidobenzylidene)hydrazin‐1‐ylidene](methylamino)methanethiolate}, a caesium cation and a methanol solvent molecule. Each L2− ligand binds through the thiolate S, the imine N and the phenolate O atoms as donors, resulting in an FeIIIS2N2O2 chromophore. The O,N,S‐coordinating ligands are orientated in two perpendicular planes, with the O and S atoms in cis positions and the N atoms in trans positions. The FeIII cation is in the low‐spin state at 100 K.  相似文献   

20.
Using polynuclear metal clusters as nodes, many high‐symmetry high‐connectivity nets, like 8‐connnected bcu and 12‐connected fcu , have been attained in metal–organic frameworks (MOFs). However, construction of low‐symmetry high‐connected MOFs with a novel topology still remains a big challenge. For example, a uninodal 8‐connected lsz network, observed in inorganic ZrSiO4, has not been topologically identified in MOFs. Using 2,2′‐difluorobiphenyl‐4,4′‐dicarboxylic acid (H2L) as a new linker and 1,2,4‐triazole (Htrz) as a coligand, a novel three‐dimensional CdII–MOF, namely poly[tetrakis(μ4‐2,2′‐difluorobiphenyl‐4,4′‐dicarboxylato‐κ5O1,O1′:O1′:O4:O4′)tetrakis(N,N‐dimethylformamide‐κO)tetrakis(μ3‐1,2,4‐triazolato‐κ3N1:N2:N4)hexacadmium(II)], [Cd6(C14H6F2O4)4(C2H2N3)4(C3H7NO)4]n, (I), has been prepared. Single‐crystal structure analysis indicates that six different CdII ions co‐exist in (I) and each CdII ion displays a distorted [CdO4N2] octahedral geometry with four equatorial O atoms and two axial N atoms. Three CdII ions are connected by four carboxylate groups and four trz ligands to form a linear trinuclear [Cd3(COO)4(trz)4] cluster, as do the other three CdII ions. Two Cd3 clusters are linked by trz ligands in a μ1,2,4‐bridging mode to produce a two‐dimensional CdII–triazolate layer with (6,3) topology in the ab plane. These two‐dimensional layers are further pillared by the L2− ligands along the c axis to generate a complicated three‐dimensional framework. Topologically, regarding the Cd3 cluster as an 8‐connected node, the whole architecture of (I) is a uninodal 8‐connected lsz framework with the Schläfli symbol (422·66). Complex (I) was further characterized by elemental analysis, IR spectroscopy, powder X‐ray diffraction, thermogravimetric analysis and a photoluminescence study. MOF (I) has a high thermal and water stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号